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ABSTRACT: The thermal instability of a couple-stress fluid acted upon by uniform vertical magnetic 
field and rotation heated from below is investigated. Following the linearized stability theory and 
normal mode analysis, the paper mathematically established the condition for characterizing the non-
oscillatory motions which may be neutral or unstable for any combination of free and rigid boundaries 
at the top and bottom of the fluid. It is proved mathematically that all non-decaying slow motions 
starting from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth, 
which is acted upon by uniform vertical magnetic field and rotation opposite to gravity and a constant 
vertical adverse temperature gradient, are necessarily non-oscillatory, in the regime established. The 
result is important since it hold for all wave numbers and for any combination of perfectly conducting 
dynamically free and rigid boundaries.  
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INTRODUCTION 
The thermal instability of a fluid layer with maintained adverse temperature gradient by 

heating the underside plays an important role in Geophysics, interiors of the Earth, Oceanography and 
Atmospheric Physics, and has been investigated by several authors (e.g., Bénard [4], Rayleigh [13], 
Jeffreys [8]) under different conditions. A detailed account of the theoretical and experimental study 
of the onset of Bénard Convection in Newtonian fluids, under varying assumptions of hydrodynamics 
and hydromagnetics, has been given by Chandrasekhar [6] in his celebrated monograph. The use of 
Boussinesq approximation has been made throughout, which states that the density changes are 
disregarded in all other terms in the equation of motion except the external force term. The problem 
of thermohaline convection in a layer of fluid heated from below and subjected to a stable salinity 
gradient has been considered by Veronis [19].  

The physics is quite similar in the stellar case, in that helium acts like in raising the density and 
in diffusing more slowly than heat. The condition under which convective motions are important in 
stellar atmospheres are usually far removed from consideration of single component fluid and rigid 
boundaries and therefore it is desirable to consider a fluid acted upon by a solute gradient with free 
or rigid boundaries. The problem is of great importance because of its applications to atmospheric 
physics and astrophysics, especially in the case of the ionosphere and the outer layer of the 
atmosphere. The thermosolutal convection problems also arise in oceanography, limnology and 
engineering. Bhatia and Steiner [6] have considered the effect of uniform rotation on the thermal 
instability of a viscoelastic (Maxwell) fluid and found that rotation has a destabilizing influence in 
contrast to the stabilizing effect on Newtonian fluid.  

Sharma [16] has studied the thermal instability of a layer of viscoelastic (Oldroydian) fluid acted 
upon by a uniform rotation and found that rotation has destabilizing as well as stabilizing effects 
under certain conditions in contrast to that of a Maxwell fluid where it has a destabilizing effect. 
There are many elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive relations 
or Oldroyd’s [11] constitutive relations. Two such classes of fluids are Rivlin-Ericksen’s and Walter’s 
(model B’) fluids.  Rivlin-Ericksen [14] has proposed a theoretical model for such one class of elastico-
viscous fluids. Sharma and kumar [17] have studied the effect of rotation on thermal instability in 
Rivlin-Ericksen elastico-viscous fluid and found that rotation has a stabilizing effect and introduces 
oscillatory modes in the system. Kumar et al. [9] considered effect of rotation and magnetic field on 
Rivlin-Ericksen elastico-viscous fluid and found that rotation has stabilizing effect; where as magnetic 
field has both stabilizing and destabilizing effects. A layer of such fluid heated from below or under 
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the action of magnetic field or rotation or both may find applications in geophysics, interior of the 
Earth, Oceanography, and the atmospheric physics. With the growing importance of non-Newtonian 
fluids in modern technology and industries, the investigations on such fluids are desirable. 

In all above studies, the medium has been considered to be non-porous with free boundaries 
only, in general. In recent years, the investigation of flow of fluids through porous media has become 
an important topic due to the recovery of crude oil from the pores of reservoir rocks. When a fluid 
permeates a porous material, the gross effect is represented by the Darcy’s law. As a result of this 
macroscopic law, the usual viscous term in the equation of Rivlin-Ericksen fluid motion is replaced by 
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Rivlin-Ericksen fluid, 1k  is the medium permeability and q  is the Darcian (filter) velocity of the fluid. 
The problem of thermosolutal convection in fluids in a porous medium is of great importance in 
geophysics, soil sciences, ground water hydrology and astrophysics. Generally, it is accepted that 
comets consist of a dusty ‘snowball’ of a mixture of frozen gases which, in the process of their 
journey, changes from solid to gas and vice-versa. The physical properties of the comets, meteorites 
and interplanetary dust strongly suggest the importance of non-Newtonian fluids in chemical 
technology, industry and geophysical fluid dynamics. Thermal convection in porous medium is also of 
interest in geophysical system, electrochemistry and metallurgy. A comprehensive review of the 
literature concerning thermal convection in a fluid-saturated porous medium may be found in the book 
by Nield and Bejan [10]. 

Pellow and Southwell [12] proved the validity of PES for the classical Rayleigh-Bénard 
convection problem. Banerjee et al [2] gave a new scheme for combining the governing equations of 
thermohaline convection, which is shown to lead to the bounds for the complex growth rate of the 
arbitrary oscillatory perturbations, neutral or unstable for all combinations of dynamically rigid or 
free boundaries and, Banerjee and Banerjee [1] established a criterion on characterization of non-
oscillatory motions in hydrodynamics which was further extended by Gupta et al [7]. However no such 
result existed for non-Newtonian fluid configurations in general and in particular, for Rivlin-Ericksen 
viscoelastic fluid configurations. Banyal [3] have characterized the oscillatory motions in Rivlin-
Ericksen fluid in the presence of magnetic field. 

Keeping in mind the importance of non-Newtonian fluids, as stated above, this article attempts 
to study Rivlin-Ericksen viscoelastic fluid heated from below in the presence of uniform vertical 
magnetic field and  uniform rotation in a porous medium, with rigid boundaries and it has been 
established that the onset of instability in a Rivlin-Ericksen viscoelastic fluid heated from below in a 
porous medium, in the presence of uniform vertical magnetic field and uniform rotation, cannot 
manifest itself as oscillatory motions of growing amplitude if Q the Chandrasekhar number, AT  the 

Taylor number, F the viscoelasticity parameter, ε  the porosity, lP  the medium permeability  and 2p  

the magnetic Prandtl number, satisfy the inequality, 12

2
2 














 lA

l

l PT
Qp

FP

P


 , for all wave numbers 

and for any combination of perfectly conducting dynamically free and rigid boundaries.  
FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 

Here we Consider an infinite, horizontal, incompressible electrically conducting Rivlin-Ericksen 
viscoelastic  fluid layer, of thickness d, heated from below so that, the temperature and density at 
the bottom surface z = 0  are 0T  and 0ρ , and  at the upper surface z = d are dT  and dρ  respectively, 

and that a uniform adverse temperature gradient
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,  

uniform vertical rotation ( )Ω,0,0Ω
→

 and a uniform vertical magnetic field pervade on the 

system ( )H,0,0H
→

.This fluid layer is assumed to be flowing through an isotropic and homogeneous 

porous medium of porosity  and medium permeability 1k . 

Let p , ρ , T, α , g , η , eμ and ( )w,v,uq
→

 denote respectively the fluid pressure, fluid density 
temperature, thermal coefficient of expansion, gravitational acceleration, resistivity, magnetic 
permeability and filter velocity of the fluid.  Then the momentum balance, mass balance, and energy 
balance equation of Rivlin-Ericksen fluid and Maxwell’s equations through porous medium, governing 
the flow of Rivlin-Ericksen fluid in the presence of uniform vertical magnetic field and uniform 
vertical rotation (Rivlin and Ericksen [14]; Chandrasekhar [6] and Sharma et al [18]) are given by 
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and while sρ , sc and 0ρ , ic , stands for the density and heat capacity of the solid (porous matrix) 

material and the fluid, respectively,  ε  is the medium porosity and )z,y,x(r
→

.                                                         
The equation of state is: 

                             ( )[ ]
00 TTα1ρρ --=                                                                  (6) 

where the suffix zero refer to the values at the reference level z = 0. In writing the equation (1), we 
made use of the Boussinesq approximation, which states that the density variations are ignored in all 
terms in the equation of motion except the external force term. The kinematic viscosity ν  , kinematic 

viscoelasticity
'ν , magnetic permeability eμ , thermal diffusivity κ , and electrical resistivity η , and the 

coefficient of thermal expansion α  are all assumed to be constants. 
The steady state solution is 

( )0,0,0q =
→

 , )zαβ1(ρρ 0 += , 0TzβT +-=                                           (7)                   
Here we use the linearized stability theory and the normal mode analysis method. Consider a 

small perturbations on the steady state solution, and let δρ , pδ ,θ , ( )w,v,uq
→

 and ( )
zyx h,h,hh =

→

  

denote respectively the perturbations in density  , pressure p, temperature T, velocity )0,0,0(q
→

and 

the magnetic field ( )H,0,0H =
→

. The change in density δρ , caused mainly by the perturbation    in 
temperature is given by    

        )αθ(ρδρ 0-= .                                                                (8)                   
Then the linearized perturbation equations of the Rinlin-Ericksen fluid reduces to  
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NORMAL MODE ANALYSIS 
Analyzing the disturbances into two-dimensional waves, and considering disturbances 

characterized by a particular wave number, we assume that the Perturbation quantities are of the 
form 
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where yx k,k  are the wave numbers along the x- and y-directions, respectively,  2
1

22
yx kkk  , is the 

resultant wave number, n is the growth rate which is, in general, a complex constant; 
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=  denote the z-component of vorticity and current density respectively and 

)z(Z),z(Γ),z(Θ),z(K),z(W  and )z(X  are the functions of z only. 
Using (14), equations (9)-(13), within the framework of Boussinesq approximations, in the non-

dimensional form transform to 
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where we have introduced new coordinates ( )'z,'y,'x  = (x/d, y/d, z/d) in new units of length d and 
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We now consider the cases where the boundaries are rigid-rigid or rigid-free or free-rigid or 

free-free at z = 0 and z = 1, as the case may be, and are perfectly conducting. The boundaries are 
maintained at constant temperature, thus the perturbations in the temperature are zero at the 
boundaries. The appropriate boundary conditions with respect to which equations (15) - (17), must 
possess a solution are: 

W = 0 = , on both the horizontal boundaries, 
DW = 0=Z=K=DX, on a rigid boundary, or 
0WD2 = =DZ=K=DX, on a dynamically free boundary,                                 (20)                       

Equations (15)--(19), along with boundary conditions (20), pose an eigenvalue problem for σ  
and we wish to characterize iσ , when 0σ r ≥ . 

We first note that sinceW ,K  and Z  satisfy )1(W0)0(W == and )1(K0)0(K ==   in addition 
to satisfying to governing equations and hence we have from the Rayleigh-Ritz inequality Schultz [15] 
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MATHEMATICAL ANALYSIS 
We prove the following lemma:  
Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Multiplying equation (17) by K  (the complex conjugate of K ), integrating by parts 
each term of the resulting equation on the left hand side for an appropriate number of times and 
making use of boundary conditions on K  namely )1(K0)0(K == , it follows that 
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Since 0r  and 02 p , hence inequality (22) on utilizing (24), give 
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This completes the proof of lemma. 
Lemma 2: For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Multiplying equation (16) by Z  (the complex conjugate of Z), integrating by parts each 
term of the resulting equation on the left hand side for an appropriate number of times on utilizing 
equation (18) and  appropriate boundary conditions (20), it follows that 
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This completes the proof of lemma.  
We prove the following theorem: 

Theorem 1: If  R  0, F  0, 0Q , AT 0, 0lP , 01p , 02 p , 0r  and 0i  then the 

necessary condition for the existence of non-trivial solution   XZKW ,,,,  of  equations (15) – (19), 
together with boundary conditions (20)  is that 
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Proof: Multiplying equation (15) by  W  (the complex conjugate of W) throughout and 
integrating the resulting equation over the vertical range of z, we get 
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




 DWQDXZF

Pl

**
*

)1(
1 


 ,                                          (32) 

Therefore, using (32), we get  

  







 

1

0

*
1

0

1

0

**
*1

0

)1(
1

dzZDXQZdzZF
P

ZdzDWDZdzW
l



 , 

Integrating by parts the third term on left hand side and using equation (18), and appropriate 
boundary condition (20), we get 

   







 

1

0

*
2

22
1

0

1

0

*
*

)1(
1

dzXpaDXQZdzZF
P

DZdzW
l



 ,                  (33) 

Also taking complex conjugate on both sides of equation (17), we get 
    DWKpaD 2

22 ,                                                      (34) 
Therefore, equation (34), using appropriate boundary condition (20), we get  

          
1

0

1

0

1

0

2
22222222 dzKpaDaDKKdzaDDWKdzaDDW              (35)     

Substituting (31), (33) and (35), in the right hand side of equation (29), we get 

    







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1
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1

22222
1
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1

0

*
2

22
1

0
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1
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P
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l
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
  

   KdzaDKQpKdzaDKQ 22
1

0

1

0

*
2

222     ,                                    (36) 

Integrating the terms on both sides of equation (36) for an appropriate number of times and 
making use of the appropriate boundary conditions (20), we get  
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
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l
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


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1

0

1

0

222*
2

242222 2 dzKaDKQpdzKaDKaKDQ  ,                          (37)   

Now equating the imaginary parts on both sides of equation (37), and canceling )0(i  

throughout, we get 

  
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

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
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2

2

2
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1
2 1
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P

F
TdzEpRa A

l
A 

,               (38)                       

Now R   0, 0Q , 0lP , 0  and AT  0, utilizing the inequalities (25) and (28), the equation 

(38) gives,  
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0
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



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Qp
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P

F

l
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,                             (39)                   

where   









1

0

1

0

2

2

2

1
2

1
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Is positive definite, and therefore, we must have 

                             12
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









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
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l PT
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 .                                                       (40) 

Hence, if 

0r  and 0i , then 12

2
2 














 lA

l

l PT
Qp

FP

P


  .                               (41) 

And this completes the proof of the theorem. 
Presented otherwise from the point of view of existence of instability as stationary convection, 

the above theorem can be put in the form as follow:- 
Theorem 2: The sufficient condition for the onset of instability as a non-oscillatory motions of 

non-growing amplitude in a couple-stress fluid in a porous medium heated from below, in the presence 

of uniform vertical magnetic field and rotation is that, 12

2
2 














 lA

l

l PT
Qp

FP

P


 , where Q  is the 

Chandrasekhar number, AT  is the Taylor number, F is the viscoelasticity parameter, ε  is the porosity, 

lP  is the medium permeability  and 2p  is the magnetic Prandtl number, for all wave numbers and any 

combination of perfectly conducting dynamically free and rigid boundaries. 
or 

The onset of instability in a couple-stress fluid in a porous medium heated from below, in the 
presence of uniform vertical magnetic field and rotation, cannot manifest itself as oscillatory motions 
of growing amplitude if the Taylor number AT , the Chandrasekhar number Q, the porosity ε , the 

medium permeability lP , the magnetic Prandtl number 2p  and the couple-stress parameter F, satisfy 

the inequality 12

2
2 










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


 lA

l

l PT
Qp

FP

P


  , for all wave numbers and any combination of perfectly 

conducting dynamically free and rigid boundaries. 
The sufficient condition for the validity of the ‘PES’, can be expressed in the form: 
Theorem 3: If ( )σ,X,Z,K,Θ,W , ir σiσσ += , 0σ r ≥  is a solution  of  equations (15) – (19), with 

R  0 and,   

12
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
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


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
 lA

l

l PT
Qp

FP

P


  , 

Then 0σ i = .  
In particular, the sufficient condition for the validity of the ‘exchange principle’ i.e.,  

00  ir   if 12

2
2 










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


 lA

l

l PT
Qp

FP

P


 . 

In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’ in the 
present configuration, we can state the above theorem as follow:- 

Theorem 4: The necessary condition for the existence of instability in ‘oscillatory modes’ and 
that of ‘overstability’ in a couple-stress fluid in a porous medium heated from below, in the presence 
of uniform vertical magnetic field and rotation is that the Taylor number AT , the Chandrasekhar 

number Q, the porosity ε , the magnetic Prandtl number 2p ,  the couple-stress parameter of the fluid 

F and the medium permeability lP , must satisfy the inequality 12

2
2 














 lA

l

l PT
Qp

FP

P


 , for all wave 

numbers and any combination of perfectly conducting dynamically free and rigid boundaries. 
Special Cases: It follows from theorem 1 that an arbitrary neutral or unstable mode is non-

oscillatory in character and ‘PES’ is valid for: 

(i). Thermal convection in couple-stress fluid heated from below i. e. when   Q = 0 = AT . (Sharma et al, 
2001). 
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(ii). Magneto-thermal convection in couple-stress fluid heated from below ( AT =0), if 

1
2
2 














 
 Qp

FP

P

l

l  ,  

(iii). Rotatory-thermal convection in couple-stress fluid heated from below (Q = 0), if 
2

1

l

A
P

T  . 

CONCLUSIONS 
This theorem mathematically established that the onset of instability in a couple-stress fluid in 

the presence of uniform vertical rotation, cannot manifest itself as oscillatory motions of growing 
amplitude if the Taylor number AT , the Chandrasekhar number Q, the porosity ε , the magnetic 

Prandtl number 2p ,  the couple-stress parameter of the fluid F and the medium permeability lP , 

satisfy the inequality 12

2
2 










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


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l

l PT
Qp

FP

P


 , for all wave numbers and any combination of 

perfectly conducting dynamically free and rigid boundaries. 
The essential content of the theorem, from the point of view of linear stability theory is that 

for the configuration of couple-stress fluid of infinite horizontal extension heated form below, for any 
combination of perfectly conducting dynamically free and rigid boundaries. In the presence of uniform 
vertical magnetic field and rotation, parallel to the force field of gravity, an arbitrary neutral or 

unstable modes of the system are definitely non-oscillatory in character if 12

2
2 










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 , 

and in particular PES is valid. 
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