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ABSTRACT: In this paper, a real-time robot control system developed at Lola Institute has been 
presented. The system is a part of a distributed one, in which control logic is implemented using a 
finite state machine (FSM). The real-time system is based on the Linux platform, where the Linux 
kernel is patched with the real-time framework Xenomai. OROCOS (Open RObot COntrol Software) is 
used to provide the real-time environment to implement desired robot control software in C++. The 
system consists of various structured components with different roles. It is designed to be modular 
and flexible, which provides easy connection and disconnection of components depending on the 
requirements. The usage of the real-time FSM enables supervisory control and monitoring. A system 
modeling has been also presented, using UML graphics tool. 
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INTRODUCTION 

In the field of development of robot control systems, it is of great importance that the system 
is modular as much as possible, easy to use, flexible and not expensive. Unlike dedicating machining 
systems, modular and flexible systems offer these requirements [4, 12]. Engineers from Lola Institute 
aim to follow that approach. The goal of this research is to find an easy way to supervise and monitor 
complex robot control systems. The main aim is to create a solution for easy interaction between one 
control module and other components, as well as to find a way to include required configuration for 
desired application. The solution is found in a real-time FSM (finite state machine), which provides 
high level overview in controlling of software components [1, 2]. The developed system is based on 
the real-time Linux platform. The robot control software consists of appropriate real-time tasks, 
which are implemented through the OROCOS components [10]. For system modeling UML tool is used. 
A sequence diagram for one of its states is presented in this paper.  

Proposed distributed system for robot motion control consists of two parts: the offline system 
and the real-time system. A program written in L-IRL programming language [11] is the input of the 
offline system. The offline system compiles the program and generates appropriate output in a form 
of an object code. The offline system [9] sends generated object code to the real-time system, where 
it is interpreted in real-time. Interpretation is performed under the control of the FSM. 
Communication between the offline and real-time parts of the system is implemented using CORBA 
protocol [5, 8]. 
MODULAR REAL-TIME FSM 

The FSM for robot control logic is the real-time state machine used in the OROCOS software 
[10]. The FSM contains a collection of states and each state defines a program on entry of the state, 
when it is run and on exit. It also defines all transitions to a next state. There are two modes that 
FSM can run. These are automatic and reactive mode which can be swapped during the run-time. The 
automatic mode is used in this development. 

In automatic mode, after the run program of the current state finishes, the transition 
conditions to other states are evaluated. If the transition condition is met, the transition program is 
executed and then the exit program of the current state is called. After that the entry program of the 
next state is executed. If no transition evaluated to true, the handle program of the current state is 
called.  

A running FSM is always in exactly one of its states. One time per period, it checks whether it 
can transition from that state to another state, and if so makes that transition. By default, only one 
transition can be made in one step.  
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A FSM can have any number of states. It needs to 
have exactly one initial state, which is the state that 
will be entered when the FSM is activated for the first 
time. There is also exactly one final state, which is 
automatically entered when the FSM is stopped. It 
means that the transition from any state to the final 
state must always be meaningful. 

The FSM used for the developed system control is 
shown in Figure 1. It has five different states: Start 
Robot, Calibrate Offsets, Initialization Sequence, Move 
Robot and Stop Robot. 

Start Robot is initial state and Stop Robot is finite 
state. Transition from the Start Robot state to some of 
the next states depends on whether calibration and 
initialization sequence are done or not. The FSM can 
make transition from Calibrate Offsets to the 
Initialization Sequence state or to Move Robot, while 
Initialization Sequence can make transition only to Move 
Robot. Stop Robot is selected as the next state when the 
FSM is in the Move Robot state. 
CONTROL SYSTEM ARCHITECTURE 

The system architecture is based on the network 
of components designed by the developer. Each 
component presents independent functional block.  

Implemented components can be configured using XML files, accessible over a network and 
listening to a scripting interface, which allows components to be controlled using text commands. 
OROCOS Device Interface (DI) defines how to interact with analog and digital I/O and encoders. A 
component which accesses I/O devices can use the OROCOS DI. Components can make use of external 
libraries as well.  

The OROCOS Real-Time Toolkit (RTT) is one of the OROCOS libraries used to provide the real-
time environment to build desired robotics applications in C++. OROCOS components which only use 
the Real-Time Toolkit are portable over different processor architectures and Operating Systems (OS). 
OROCOS has an internal OS abstraction which allows the components to run on any supported 
architecture. When some component uses an external library, portability depends on these libraries.  

There are four policies for the control of component activities [10]:  
� NonPeriodicActivity;  
� PeriodicActivity;  
� SequentialActivity;  
� SlaveActivity.  

Each component inherits a 
public interface from its base 
class (TaskContext class), which 
defines the following primitives 
for component interactions (as 
shown in Figure 2):    
� Events;  
� Methods;  
� Commands;   
� Properties;  
� Data Port.  

The basic block model of 
the control system is shown on 
Figure 3 [6].  

The Viewer component is 
used to load the FSM and set 
period of checking whether the 
FSM can transition from one 
state to another. The other 
components are peers of this component. In that way, the FSM has ability to access interfaces of other 
components. The Viewer component is executed periodically with a 1 ms period.  

The Trajectory Generator component is the most important component in the system and 
presents a generator of trajectory positions. Trajectory Generator can be decomposed into four 

 
Figure 1. The real-time FSM used  

in the development of new control system 

 
Figure 2. The OROCOS component interface 
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submodules: interpreter, path planner, interpolator and kinematics module. It calculates the 
reference position values that have to be sent to the Servo Controller component. Every 5 ms new 
values are written in desi_pos (Data Port). Trajectory Generator implements algorithms developed at 
Lola Institute [7].  

 
Figure 3. Basic block model of the real-time control system 

The Initialization component generates values of positions during initialization sequence. 
Similar to Trajectory Generator, it writes desired values to init_pos (every 5 ms).  

The Servo Controller component implements servo-loop mechanism. Every 1 ms, this component 
sends reference velocity values that have to be reached. It writes velocities into its Data Port named 
out_vel. Since the Trajectory Generator and the Initialization components write desired values to 
desi_pos and init_pos on every 5 ms, Servo Controller has five chances to drive the Robot Interface 
component to the position sent by Trajectory Generator. 

The Robot Interface component abstracts sensors and actuators of the system. This component 
communicates with the hardware of robot joints and encoders. It has Data Port sens_pos where it 
writes the values which are read from the incremental encoders. This port is represented by a vector 
which size depends on the number of robot joints. Also it has a read-only Data Port out_vel where the 
component reads values (every 1 ms) sent by Servo Controller. Those values should be applied to the 
robot joints.  

The Report component is set to monitor and capture data exchanged by other components. Its 
activity is periodical as well as the activities of other components. The Report component is executed 
with a 10 ms period.  
FSM AND SYSTEM COMPONENTS RELATION 

The real-time FSM allows easy control of OROCOS components. It is possible to configure, start 
and stop execution of components, call their methods and commands, etc.  

Further, these features enable both static and dynamic control system reconfiguration 
depending on the requirements. The system integrator can modify and configure each component 
during the static configuration state and define more than one configuration. If more than one 
configuration is defined, the system integrator has to add new state (Robot Reconfiguration for 
instance) in the existing FSM in order to provide dynamic reconfiguration. The application user then 
can change configuration entering the Robot Reconfiguration state and choosing desired configuration 
at run time (dynamic reconfiguration state).  

The real-time FSM and control system components communicate bidirectional through their 
interfaces. That relation is presented in this section. Initial conditions, before starting the FSM, are: 
the Trajectory Generator, the Servo Controller, the Robot Interface components are configured, the 
Viewer, the Robot Interface components are started and FSM is activated and started in automatic 
mode.  

Start Robot is initial state where the Robot Interface component plays the main role. Robot is 
prepared for use and the breaks of the axes are released. As long as all these actions are in progress, 
the FSM stays in the Start Robot state. When the robot is prepared for use, the next state is 
determined depending on the previous use of the robot. If calibration was not done Calibrate Offsets 
is selected as a next state, otherwise Initialization Sequence or the Move Robot is selected depending 
on whether the initialization was done or not.  
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Calibrate Offsets is a state where the calibration is executed. In this state the Servo Controller 
component is started as well as the Report component that monitors and captures data exchanged by 
other components. As long as the calibration lasts, the FSM stays in the Calibrate Offsets state. After 
calibration is done, transition to the next state depends on whether the initialization sequence was 
previously done or not. In the first case, Move Robot is the next state and in the latter case, the next 
state is Initialization Sequence. 

Initialization Sequence is a state where robot is driven to the starting position and reset of the 
encoders is done. At the beginning, the Initialization component is configured and started and it is 
stopped at the end, in the Exit Program of this state. First, it aims to find inductive sensors and after 
that Z points of the incremental encoders for each joint. Considering known distances from Z points to 
the initial positions, robot goes to the starting position after Z points are found. The FSM is in this 
state, while the initialization is in progress. It makes transition to the Move Robot state at the end of 
initialization.  

Move Robot is a state where robot motions are executed. When entering the state, the 
Trajectory Generator component is starting. At this stage, all components are started and executed 
except the Initialization component. When all motions are finished, the FSM makes transition from 
this state to the finite Stop Robot state. In the Exit Program of the Move Robot state, the Trajectory 
Generator component is stopped as well as the Report component.  

Stop Robot is finite state where robot is prepared for shut down and the breaks of the axes are 
pressed. When all is done, the Servo Controller, the Sensor, the Robot and the Viewer components are 
stopped. 
USING UML IN REAL-TIME SYSTEM DEVELOPMENT 

The UML is a graphical language that is based on the assumption that each system can be 
composed of a group of interactive entities and different aspects of these entities. Their 
communication can be described using five diagrams: use-case, sequence, collaboration, state chart 
and activity diagram, while the rest is considered architectural or static aspects. 

 
Figure 4. UML sequence diagram of the program flow in case of object code execution 
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For real-time systems these types of behavioral patterns are of interest. The primary goal when 
using UML is structural system specification, the organization of the elements that exist at the time 
of execution, the internal organization and the organization of elements in interaction [3]. 

Sequence diagram of the program flow is shown in Figure 4. Diagram describes the behavior of 
the main components of the system in case of execution of an object code.  
TESTING OF THE SYSTEM 

Real-time system operations are tested on an experimental test station. The parts of the 
stations are PC, three DC servomotors as well as three inductive sensors and three incremental 
encoders, required cards and appropriate hardware to connect the PC with servomotors. Servomotors 
simulate robot joint actuators. The configuration of 6-axis Lola 15 robot manipulator [10] is used to 
test the system. L-IRL (Lola Industrial Robot Language) is used for programming the tool path. The 
test code is shown on Figure 5. It is executed in the Move Robot state. Considering the test station has 
three axes, the other three were set to zero degrees.  

 
Figure 5. –Test code written in L-IRL 

During testing, the positions of 
servomotors are recorded from the 
incremental encoders. Figure 6 shows 
all robot phases (FSM states). In each 
state the components are controlled 
by configuring, starting or stopping. 
They are used by calling appropriate 
methods and commands. In the Start 
Robot state robot is prepared for use. 
After preparation and calibration 
(the Calibrate Offsets state), the 
Initialization Sequence state is 
executed.  Joints and their reference 
points, one by one, are moving in 
order to find inductive sensors. When 
all sensors are touched, joint 
reference points are removed from 
sensors and Z points of the 
incremental encoders are being 

searched. When Z points are found, considering known distances from Z points to the initial positions, 
robot joints goes to the starting positions. The incremental encoders are reset and then the test code 
from Figure 6 is executed (the Move Robot state). When all motions are finished, the FSM makes 
transition to the final Stop Robot state. 
CONCLUSIONS 

The paper describes the development of the system which provides all necessary functionalities 
for robots, machine tools and similar devices in a more efficient way and makes development easier 
and less expensive. This is achieved using the real-time FSM and the OROCOS components. The usage 
of OROCOS provides wide range of benefits in development of multi-axis machining systems. 
Modularity and flexibility of OROCOS libraries enable implementation of complex robotic systems 
using user defined components as well as some ready to use components from OROCOS Component 
Library (OCL). Each of these components presents an object that can be added or removed, and offers 
its services through neutral programming interface CORBA. This brings interoperability between 
components, even if the components are written in various programming languages or running on 
separate machines with different operating systems. 

The testing of the system was performed with an experimental servo station. The obtained 
results were presented as the positions of robot joints. The results also showed the FSM ability to 
make real-time transition from one state to another. 
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Figure 6. – Positions of servomotors read from encoders 
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