

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal of Engineering Tome XI (Year 2013) - FASCICULE 3 (ISSN 1584 - 2673)

<sup>1.</sup> Ilie DUMITRU, <sup>2.</sup> Ion BOGDAN, <sup>3.</sup> Mihnea CATANEANU, <sup>4.</sup> Alexandru OPRICA

# USING TYPE IDENTIFICATION SYSTEMS TO TEST THE MATHEMATICAL MODEL FOR THE ECONOMIC POLE OF A DIESEL ENGINE

<sup>1,3,4.</sup> University of Craiova, Faculty of Mechanics, ROMANIA <sup>2.</sup> National College "Radu Negru" of Fagaras, ROMANIA

**ABSTRACT:** Optimizing power using diesel engines in automotive power systems (example: road train assembly or tractor and machine work system) requires determining the engine speed-actual torque function for which specific fuel consumption is minimum at each constant power level which gives the premises for the design and implementation of an information system for the management and control of optimal use of engine power. Experimental research is conducted mainly for collecting data required to develop and verify algorithms resulting from mathematical modeling of indirect determination of torque, optimum curve and hence the economic pole. For this purpose, the engine tested under laboratory conditions has been subjected to experimental measurements and corresponding parameters were measured: actual torque  $M_e$  and actual engine speed  $n_e$  at different constant values for exhaust temperature  $\theta_{qe}$ . The solutions' validation requires the use of dedicated methods of which stands type identification method system. Checking the correlation coefficient between real data (measurements taken at the test track drive with the car brake) and theoretical relation established after mathematization. The main purpose of the track measurements was to compare with the results obtained from stand. Kerwords: mathematical model, optimizing power, economic pole, type identification method system

## REASONS FOR RESEARCH CONDUCTED

Phenomenas that take place during engine operation in different regimes are complex and mathematical models can be developed, generally only based on experimental results.

The procedures used are called system identification. In line with this type of procedure based on the analysis of experimental data and their processing can lead to theoretical formulations established into mathematical models that are searched.

To optimize performance engines in recent years there has been concerns for research in order to obtain mathematical models for the performance of diesel engine. These concerns are based on the advantages of analytical solutions in terms of testing compression ignition engines. So in the case of mathematical modeling to define an engine performance map, it involves reducing the number of measured points from 250 points (required for experimental lifting of the map) to 20 points (Figure 1).

In the study, the authors present sequences of using this method in research conducted to determine the economic pole.

Economic pole determination is based on the development of complex mathematical models that lead to obtaining the optimal engine operating map.



(Guezennec, 2003)

To achieve an efficient system identification there are used data collected for this purpose from engine braking on stand (on schedule in Figure 2).



Figure 3. The experimental determinations schedule at traction test track

Subsequently, the validation of mathematical models is made using processed data obtained from the test track determinations (according to schedule in Figure 3).

For this purpose, the engine has undergone appropriate experimental measurements using the brake system through the PTO.

Parameters that were measured are: actual torque  $M_e$  and actual engine speed  $n_e$  at different constant values corresponding to the exhaust temperature  $t_{ge}$ .



# Figure 4. Model of optimal functioning map for the engine in test

#### STAGES OF MATHEMATICAL MODELING

Algorithm necessary to obtain the izo-consumption curves

There were performed h experimental determinations in which the specific fuel consumption  $c_e$  [g / kWh] was followed for different values of engine speed  $n_e$  [rot/min] and effective torque  $M_e$  [Nm], the specific fuel consumption being considered a polynomial function of time and speed:

$$c = \sum_{i=0}^{p} \sum_{j=0}^{s} a_{ij} \cdot M^{i} \cdot n^{j}$$
<sup>(1)</sup>

To determine the coefficients  $a_{ii}$ , it is used the method of the least squares:

Having determined the coefficients, their values are entered in the specific fuel consumption relationship:

$$c = a_{00} + a_{10} \cdot M + a_{01} \cdot n + a_{11} \cdot M \cdot n + a_{20} \cdot M^2 + a_{02} \cdot n^2$$
(2)

And thus obtain the final form of dependencies  $c_e$  ( $M_{ek}$ ,  $n_{ek}$ ):

One can notice that the dependence  $c_e$  ( $M_{ek}$ ,  $n_{ek}$ ) is an equation that defines an ellipse. To represent the izo-consumption curves (Figure 5), the same program is used.

| Image: Set: Wew Inset: Format: Option: Vindow Heb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contract Contraction Contraction                                                                           |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | File Edit View Insert Format Options Window Help                                                           | _ 8 ×                                 |
| P Now       ■ Tens Now Reason       ■ P and P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                       |
| Server (12*4, 101) - 4612+4, 101 - 4003 + 4013 + 4003 + 4013 - 4003 + 2012 - 5017 22*4, 101 - 4517 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P Normal V Times New Roman V 12 V B Z H = = =                                                              |                                       |
| status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > solve({25*a[00]+3461*a[10]+40128*a[01]+480040*a[20]+71330365*a[02]+5537392*a[11]=6340.3461*a[00]+480040* | a[10]+5537392*a[01]+66702050*a[20]+ 🔺 |
| Substance (con) - extra 2000-06 (10) - 755525 2000-06 (10) - 755527 2000 - 764     (10) - 55572 2000-06 (10) - 75572 2000 - 764     (10) - 55572 2000-06 (10) - 75572 2000 - 764     (10) - 55572 2000-06 (10) - 75572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-06     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 55572 2000-07     (10) - 5557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9782760767*a[02]+765623690*a[11]=877188,40128*a[00]+5537392*a[10]+71330365*a[01]+480040*a[20]+1,36709*10   | 11*a[02]+9782760767*a[11]=10237210    |
| [1] - 1. 67399-10 - 1.144 (01) - 1. 54459-10 - 1224 (20) - 7. 54529-10 - 1244 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 1344 (11) - 44191 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491 - 44491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,480040*a[00]+66702050*a[10]+765623690*a[01]+9284112907*a[20]+1.34452*10^12*a[02]+1.06056*10^11*a[11]-12   | 1593367,71330365*a[00]+9782760767*a   |
| 91 - 1. 60054*10*11*a (20) - 1. 6624*10*12*a (20) - 1. 54052*10*12*a (11) - 6411577999), (a(00), a(10), a(10), a(20), a(20), a(20), a(11));         (ag - 45:532; ag - 101265; ag + 157553; ag + 00091112; M - 1, 9000016; ag = 179 10 <sup>-5</sup> )         > (c - 45:532; ag - 101266; ag + 157553; ag + 00091112; M - 2, 800017; ag + 1000016; ag = 179 10 <sup>-5</sup> )         > (c - 45:532; ag - 101266; ag + 157553; ag + 00091112; M - 2, 800017; ag + 1000016; ag = 179 10 <sup>-5</sup> )         > (c - 45:532; ag - 101266; ag + 157553; ag + 00091112; M - 2, 800016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000017; ag + 0.00016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000017; ag + 0.00016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000017; ag + 0.00016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000017; ag + 0.00016; ag = 179 10 <sup>-5</sup> )         > with ag intert given (1, 20), 1, -145; 312; a - 000017; ag + 0.00017; ag + 0.000017; ag + 0.00017; ag + 0.00017; ag + 0.000017; ag + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [10]+1.36709*10^11*a[01]+1.34452*10^12*a[20]+2.76362*10^14*a[02]+1.8614*10^13*a[11]=18300229248.5537392*   | a[00]+765623690*a[10]+9782760767*a[   |
| [q] = 46/532, q] = 101266, a g] = 1975553, ag] = 000911128, ag] = 0000016, ag = 179 10 <sup>-5</sup> ] > = -46/5 328 - 4.000179 a <sup>2</sup> - 4.000911128 d <sup>2</sup> - 1.02603 + -1.975533 M + 0.00016 d g > = -46/5 328 - 4.000179 a <sup>2</sup> - 4.00011121 d <sup>2</sup> - 1.02603 + -1.975533 M + 0.00016 d g • = 46/5 328 - 4.000179 a <sup>2</sup> - 4.00011121 d <sup>2</sup> - 1.02603 + -1.975533 M + 0.00016 d g • = 46/5 328 - 4.000179 a <sup>2</sup> - 4.00011121 d <sup>2</sup> - 1.02603 + -1.975533 M + 0.00016 d g • = 46/5 328 - 4.000179 a <sup>2</sup> - 4.00011121 d <sup>2</sup> - 1.02603 + -1.975533 M + 0.000178 a <sup>2</sup> - 4.000178 a <sup></sup> | 01]+1.06056*10^11*a[20]+1.8614*10^13*a[02]+1.34452*10^12*a[11]=1411573098),(a[00],a[10],a[01],a[20],a[02]  | ],a[11]));                            |
| (q = 405.532, q = -1012403, q = 1 972553, q = 0.0917112, q = -0.00016, q = 177 10 <sup>-5</sup> )<br>> c = -14.5.332 + 0.000174m, 2 = 0.00017112, q = -0.00017112, q = -0.00016, q = 177 10 <sup>-5</sup> )<br>> c = -45.532 + 0.000174m, 2 = 0.00017112, q = -0.000071, q = -0.0001714, q = -0.000174m, 2 = -0.000174m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                                       |
| (q) = 46.532, q) =012603, q) = 1973533, q) = 00917112, q1 = 000016, q2 = 179.10 <sup>-5</sup> ) > =145, 532+4, 000174**, 2+0, 009271128***-4, 512564**-1, 5725551***, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174***, 2+0, 000174****, 0+000174***, 2+0, 000174****, 0+000174****, 0+000174***, 2+0, 000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174****, 0+000174*****, 0+000174****, 0+000174****, 0+000174****, 0+000174*****, 0+000174*****, 0+000174*****, 0+000174*****, 0+000174*****, 0+000174*****, 0+000174*****, 0+000174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a = 426 5282 a = 1012662 a = 1.0285852 a = 0050121128 a = 00004016 a = 1.20 10 <sup>-\$</sup> 1           |                                       |
| <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 C:=438.3362*0.0000175*R.2*0.003511120*R.2*0.1012665*R=1.5(63635*R=0.0004016*R=R)                         |                                       |
| Handbalder : Handbalder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $c := 436.5382 \pm .0000179 n^4 \pm .0059171128 M^4 \pm .1012663 n \pm 1.9785853 M \pm .0004016 M n$       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | implicitylot ({245.1-436.5382*0.0000179*n^2*0.0059171128*K^2=0.1012663*n=1.9785853*K*0.000401              | 6*H*n,245.5-436.5382+0.0000179*n^2+   |
| 24:4-46.0322-0.000179m 2*-0.000179m 2*-0.0001710m 2*-0.000179m 2*-0.0001710m 2*-0.0001710m 2*-0.000179m 2*-0.0001710m 2*-0.00001710m 2*-0.00001710m 2*-0.00001710m 2*-0.00001710m 2*-0.00001710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0059171128*M^2-0.1012663*n-1.9785853*M+0.0004016*M*n,245.8=436.5382+0.0000179*n^2+0.0059171128*M^2-0.1   | .012663*n-1.9785853*M+0.0004016*N*n,  |
| - 3793574/10- 00001749/m, 244-456. 3322 4. 00001749/2-4. 00001749/2-4. 03122447-4. 137051514/4. 0.0001244/10, 224-456<br>57112247/- 4. 01025474-1. 75755574/-0. 00001749/2-4. 03257112247/2-4. 03122447-4. 03125447-4. 030011749/2-4. 030517112447/2-4. 030517112447/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03051711247/2-4. 03077111247/2-4. 03077111247/2-4. 03077111247/2-4. 03077111247/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 246=436.5382+0.0000179*n^2+0.0059171128*M^2-0.1012663*n-1.9785853*M+0.0004016*M*n,247=436.5382+0.0000179   | *n^2+0.0059171128*N^2-0.1012663*n-1   |
| ST112241*2-0.102263*n-1.57355371124***2-0.1025171224***2-0.00017*n*2-0.0007*n*2-0.0007*n*2-0.00071*n*2-0.00017*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0007*n*2-0.0000*0*n*2-0.000*n*0*0*n*0*0*n*0*0*n*0*0*n*0*0*n*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .9785853*M+0.0004016*M*n,248=436.5382+0.0000179*n^2+0.0059171128*M^2=0.1012663*n=1.9785853*M+0.0004016*M   | *n,250-436.5382+0.0000179*n^2+0.005   |
| - 512-4. 00017/9/m 2-4. 005171128/11 2-4. 112/6519/- 0.000164/4/9/m 2-5-18. 538-4. 000179/m 2-4. 005171128/11 2-4. 112/6519/- 1.57855<br>MH-4. 000017/9/m 2-4. 000017/9/m 2-4. 005171128/11 2-4. 112/6519/- 1.57855<br>MH-4. 000017/9/m 2-4. 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9171128*M^2-0.1012663*n-1.9785853*M+0.0004016*M*n,255-436.5382+0.0000179*n^2+0.0059171128*M^2-0.1012663*   | n-1.9785853*M+0.0004016*M*n,260-436   |
| State       000012410a, 270-35.532-0.00001794a, 2-0.0005171124412-0.1012653941.000001794a, 275-35.532-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.00001794a, 2-0.0055171124412-0.000001794a, 2-0.0055171124412-0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .5382+0.0000179*n^2+0.0059171128*M^2-0.1012663*n-1.9785853*M+0.0004016*M*n,265=436.5382+0.0000179*n^2+0.   | 0059171128*M^2-0.1012663*n-1.978585   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3*M+0.0004016*M*n,270=436.5382+0.0000179*n^2+0.0059171128*M^2=0.1012663*n-1.9785853*M+0.0004016*M*n,275=   | 436.5382+0.0000179*n^2+0.0059171128   |
| Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *X^2-0.1012663*n-1.9785853*X+0.0004016*X*n,280=436.5382+0.0000179*n^2+0.0059171128*X^2-0.1012663*n-1.978   | 5853*N+0.0004016*N*n,285-436.5382+0   |
| Statut         Statut<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0000179*n^2+0.0059171128*M^2-0.1012663*n-1.9785853*M+0.0004016*M*n,290-436.5382+0.0000179*n^2+0.0059171   | 128*M^2-0.1012663*n-1.9785853*M+0.0   |
| 191256374-1.972553598-0.000001698743) a=12002700 JH=0159) ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 004016*N*n,250-436.5382+0.0000179*n^2+0.0059171128*N^2-0.1012663*n-1.9785853*N+0.0004016*N*n,295-436.538   | 2+0.0000179*n^2+0.0059171128*M^2-0.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1012663*n-1.9785853*H+0.0004016*N*n),n=12002700,M=0150);                                                   |                                       |
| A Contraction of the contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                       |
| State Contractors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                       |
| Sector 1 and 1 an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                       |
| #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #         #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                       |
| Image: 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                       |
| genute         genute <thgenut< th=""> <thgenut< th="">         genut<th>20</th><th></th></thgenut<></thgenut<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                         |                                       |
| Image: International Control (1997)         Image: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 <sup>1</sup> 1200 1400 1400 1200 2400 2400 2400 2400                                                     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            | Time: 0.0s Bytes: 0K Free: 394948K    |
| GIGIOLMUDOCTORAT 61 Bowie Dowid w/Tips T., A Mante & Release 4 - 10 Minode/OW/G001.dor - M., 25% 5 W 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (#Start) 🔄 🍠 🖄 🦓 🔚 🧉 🌡 🕎 💋 🔇 🔇 🌾 🖏 🤌 🐭 🦄 🏷 🖓 📣 🖉                                                           | 🍕 💷 💯 🚳 🔣 13:55                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🔄 G:\DUMI\DOCTORAT 🔗 1. Bowie, David w/Tina T 🚯 Maple V Release 4 - [0 👹 model-OWC[a00].doc - M            | 25°; 🗲 🕪 🥹                            |

Figure 5. The topograma of fuel specific consumption fields for engine D 115

□ Mathematical modeling for determining the curve of optimal operation of the studied engine

To determine the optimal operating curve of an engine, it is considered that this is the locus of optimal points. These points are defined from the condition that the slopes curves M = f(n) at constant power ( $P_e = const$ ) and specific consumption constant ( $c_e = const$ ) are equal, using the theorem of "equal slope".

$$\left(\frac{\partial M}{\partial n}\right)_{P=ct} = \left(\frac{\partial M}{\partial n}\right)_{c=ct}$$
(3)

Using the mathematical and grouping terms it is obtained the economic operation optimum of the engine during operation via the "optimal engine operation curve" defined by the following function:

$$2a_{20} \cdot M^2 + a_{10} \cdot M - 2a_{02} \cdot n^2 - a_{01} \cdot n = 0$$
<sup>(4)</sup>





The graphical determination of the torque evolution of the speed characteristic at full load Using the software MAPLE on the polynomial function found experimentally it is obtained the following graphical representation for a sequence (Figure 7) with(plots):





Figure 7. Graphical representation in MAPLE of the torque variation for the studied engine CORRELATIONS STUDY ON IDENTIFYING SYSTEM TYPE THEORY

The correlation coefficient (R) is an indicator that measures the intensity of the relationship between two variables x and y. In practice it is used the formula:

$$R = \frac{n \cdot \sum x_i \cdot y_i - \sum x_i \cdot \sum y_i}{\sqrt{\left[n \cdot \sum x_i^2 - \left(\sum x_i\right)^2\right] \cdot \left[n \cdot \sum y_i^2 - \left(\sum y_i\right)^2\right]}}$$
(5)

where: n is the number of measurement points, and  $x_i$  and  $y_i$  are the values of pairs of points.

Closer values to 1 means a stronger correlation between variables x and y. If R = 0 there are independent or uncorrelated variables, and for R = 1 it results functional dependence between the two variables

Not to work with radicals, usually it is calculated the square of the correlation coefficient noted with  $R^2$ .

In practice it is considered that if:

**R**<sup>2</sup> < 0,2 there is not a significant relationship; 0< **R**<sup>2</sup> < 0.2< 0,5 there is a weak connection; **R**<sup>2</sup> < 0.5< 0.75 there is a medium intensity connection; **R**<sup>2</sup> < 0,75< 0,95 there is a strong link 1,00 0.95<  $R^2 <$ can say that the relationship is relatively deterministic

□ Correlation for the algorithm of effective torque - exhaust gas temperature - engine speed

In order to assess mathematical modeling, the authors used the Statistical module in Microsoft Excel.

The first step to determine theoretical torque depending on the exhaust gas temperature and speed is creating a MAPLE program with the following structure:

```
 \begin{array}{ll} n_e: array(1...k_i[n_1..n_k]; \\ t_{ge}: array(1...k_i[t_{ge\ 1}..nt_{ge\ k}]; \\ for \ i \ from \ 1 \ to \ i \ do \ ;Mteor[i]:= \ -58.80756705 \ + \ .2917930092^*tge[i] \ - \ .5774045918e-5^*tge[i] \ ^2 \ + \ (.2531481953 \ - \ .3583852919e-3^*tge[i] \ + \ .6951621429e-8^*tge[i] \ ^2)^*n[i] \ + \ (-.1087378640e-3 \ + \ .1565572144e-6^*tge[i] \ - \ .1936656122e-11^*tge[i] \ ^2)^*n[i]^2, print(Mteor[i]); \ od;; \\ \end{array}
```

With data thus obtained and using the software presented, it is determined the correlation coefficient (Figure 8). Its value is 0.968671165 thus resulting a relatively deterministic relationship



Figure 8. Calculating the correlation coefficient for actual torque Correlation for the theoretical function established for specific fuel consumption

Going through the same steps it is obtained (Figure 9.) a value of 0.934975777. Experimental data were taken from the test for intermediate speed range (0.9) taking into account the speed range between maximum torque speed and rated speed.



Phenomena that take place during engine operation in different regimes are complex and mathematical models can be developed, generally only based on experimental results.

The procedures used so are called system identification. In line with this type of procedure based on the analysis of experimental data and their processing can lead to theoretical formulations established into mathematical models that are searched.

To optimize performance engines in recent years there has been made research to develop mathematical models of diesel engine performance. These concerns are based on the advantages of analytical solutions in terms of testing compression-ignition engines. So in the case of mathematical modeling to define an engine performance map, it involves reducing the number of measured points from 250 points (required for experimental lifting of the map) to 20 points.

To achieve efficient identification system there data collected for this purpose from engine braking stand are used.

Subsequently, the validation of mathematical models is made by processing data obtained from determinations on the test track.

To obtain optimum engine operation it is required the development of:

Algorithm necessary to obtain izo-consumption curves

Mathematical modeling to determine optimal operation curve for the studied engine

Evolution of the torque and engine speed characteristic at full load

Validation of one mathematical model requires the use of the indicator  $R^2$  (multiple correlation coefficient).

## REFERENCES

- [1.] Apostolescu, N., Taraza, D., Bazele cercetării experimentale a maşinilor termice, Editura Didactică și Pedagogică, București, 1979;
- [2.] Bobescu, Gh. și col., Motoare pentru automobile și tractoare, Editura Tehnică, Chișinău, 1996;
- [3.] Dumitru I, Aspects concerning an improved functioning of diesel engines based on a three variables equation: performance map software on board information system, OPTIROB 2010, 28-30 may 2010, Politehnica University of Bucharest;
- [4.] Dumitru, I., Motoare pentru automobile şi tractoare. Metode moderne de optimizare a parametrilor energetici ai motoarelor Diesel cu injecție directă, Editura Universitaria, ISBN: 973-8043-85-9, Craiova, 192pg, 2008;
- [5.] Edwards, S. P., Grove, D. M., and Wynn, H. P., Statistics for Engine Optimization, 1st edition, John Wiley & Sons Canada, December 2000.
- [6.] Grunwald, B., Teoria, construcția și calculul motoarelor pentru autovehicule rutiere, Editura Didactică și Pedagogică, București, 1982
- [7.] Guezennec, Yang G., Internal Combustion Engine Fundamentals, Technical Presentation, 2003;
- [8.] Jankovic, M. and Magner, S., "Fuel Economy Optimization in Automotive Engines", Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 2006.
- [9.] Kipp, Johan-Carsten, Optimierung, des Leistungsumsatzes von Traktoren durch den Einsatz electronischer Hilfsmittel, Fortschr.-Ber. VDI Reihe 14, Nr. 35, Düsseldorf, VDI-Verlag, 1987;
- [10.] Meyer, Jason, Engine Modeling of an Internal Combustion Engine with Twin Independent Cam Phasing, Thesis, The State University Ohio, 2007;



ANNALS of Faculty Engineering Hunedoara



- International Journal of Engineering

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, 5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA <u>http://annals.fih.upt.ro</u>