

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA 143

1. Anca-Elena IORDAN

IMPLEMENTATION OF AN INTERACTIVE SOFTWARE
DESIGNED FOR THE STUDY OF UNINFORMED SEARCH
STRATEGIES

1. UNIVERSITY POLITECHNICA OF TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, ROMANIA

ABSTRACT: In this study the author present the needful stages in object orientated implementation of
an interactive software that is dedicated to the process of acquaintances assimilation in artificial
intelligence area for the study of uninformed search strategy, particular for simulation and comparing
of the following three strategies: breadth first search strategy (BFS), depth limited search strategy
(DLS) and depth first iterative deepening search strategy (IDS). The modelling of the environment is
achieved through specific UML diagrams representing the stages of analysis, design and
implementation. This interactive environment is much helpful for both students and professors,
because computer programming area, for the most part artificial intelligence area is comprehended
and assimilated with difficulty by students.
KEYWORDS: Uninformed Search Strategies, Breadth First Search, Depth Limited Search, Depth First
Iterative Deepening Search, UML, Java

INTRODUCTION

The search aspect is omnipresent in artificial intelligence [1]. The efficiency of a geat many
artificial intelligence systems is dominated by the complexity of a search strategy in their inner loops.

Simulation of uninformaed search strategies using classical 8-puzzle game has as goal the
accurate comprehending and implementing by students of the next three search strategies: breadth
first search strategy (BFS), depth limited search strategy (DLS) and depth first iterative deepening
search strategy (IDS) in problem solving, representing a complementary methodological instrument in
academical teaching process.

To realize the interactive software designed it was followed the accomplishment of following
targets:

 The oriented object design of the software by identifying the concepts who characterize the
uninformed search strategies.

 The interactive simulation of the strategies, the emphasis being set on the two sets used by these
strategies: open and closed lists.

 Realization of a comparing study of the three strategies from the point of view of the space and
time complexity.

UNINFORMED SEARCH STRATEGY - Breadth First Search Strategy
In breadth first search [2] the open list is implemented as a FIFO (first-in, first-out) queue.

Hereby, the route which is selected from the open list is the one which was added earliest. This
manner implies that the routes from the start node are generated in order of the number of arcs in
the route. One of the routes with the fewest arcs is selected at each step.

Breadth-first search is efficacious when:
 space dimension is not an impediment;
 you want to find the solution containing the fewest arcs;
 some solutions may exist, and at least one has a short route length;
 infinite routes may exist, forasmuch it explores all of the search space, although infinite

routes.
It is a small strategy when all solutions have a long route length or there is few heuristic

knowledge available. It is not used nearly often forasmuch of its space complexity.
Depth Limited Search Strategy

 The second strategy is depth limited search. In depth-first search [3], the open list acts like a
last-in first-out stack. The states are added to the stack one at a time. The one selected and taken off
the open list at any time is the last state which was added.

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 144

Depth-first search is appropriate when either space is restricted or many solutions exist,
possible by long route lengths, especially for the case where almost all routes lead to a solution. It is
a small strategy when it is possible to get pinned in infinite routes. This occurs when the graph is
infinite or when there are cycles in the graph.

Analogous with the normal depth first search, depth limited search [4] is an uninformed search.
It works ditto with depth first search, but avoids its disadvantages respecting completeness by
imposing a maximum limit on the depth of the search. Although the search could still globing a vertex
beyond that depth, it will not do so and herewith it will not follow infinitely deep routes. However
depth limited search will find a solution if it is within the depth limit, that guarantees at least
completeness on all graphs.

Depth limited search is the core for a number of other strategies, such as iterative deepening.
Depth First Iterative Deepening Search Strategy

While still an unintelligent strategy, the depth first iterative deepening search [5] combines the
positive concepts of breadth first and depth first searching to create a strategy that is frequent an
upgrading over each strategy individually.

A depth first iterative deepening search operates ditto a depth first search, with the exception
of skimpy more constrained: there is a maximum depth that defines how many tiers deep the strategy
can look for solutions. A node at the maximum tier of depth is treated as terminal, even if it would
ordinarily have successor nodes. If a search fails, then the maximum tier is increased by one and the
process repeats.
OBJECT ORIENTATED IMPLEMENTATION OF THE SOFTWARE

With the aim to observe the approach of modifying of the two lists that are used for
implementing uninformed search strategies: open list and closed list and eke to compare the obtained
results, there was implemented an interactive Java application [6]. For object orientated design of
the software, unified modeling language will be used. To achieve UML diagrams were used the
ArgoUML software [7].
UML Use Case Diagram

The analysis of the informatics system consists in drawing the use case diagrams [8]. The
informatics system will be described in a outright and terse approach by representation of the use-
cases. Each case describes the interaction among the user and the system. The diagram defines the
system’s domain, allowing visualization of the proportion and aim of the entire developing action. Use
case diagram is represented in figure 1 and includes:

 One actor - the user who is external entity with that the interactive software interacts.
 Six use-cases which describe the performance of the interactive software.
 Relationships between user and use-cases (association relationships), and relationships between

use-cases (dependency and generalization relationships).

Figure 1. Use Cases Diagram

UML Class Diagram
Conceptual modelling allows identifying the very important elements for the interactive

software [9]. Class diagram is represented in figure 2 in order to be observed the connection mode
between the classes and the interfaces that are used and also the composition and aggregate
relationships between instances.

For memorizing a state configuration, there was implemented “StatePuzzle” class which
implements “State” interface. For memorizing a node of search tree, there was implemented
“ExploredNodePuzzle” class which realizes “ExploredNode” interface and for memorizing an expanded
node together with its successors, there was implemented “ExpandedNodePuzzle” class which realizes
“ExpandedNode” interface.

Breadth first search strategy is implemented by using “BFSStrategy” class. An instance of this
class is composed by two instances of “ExploredNodePuzzle” class, according to composition

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 145

relationship which exists in diagram, but can also contain instances of “ExpandedNodePuzzle” class, as
it can be observed from aggregate relationship presented in diagram.

Depth limited search strategy is implemented by using “DLSStrategy” class. An instance of this
class is composed by two instances of “ExploredNodePuzzle” class, according to composition
relationship which exists in diagram, but can also contain instances of “ExpandedNodePuzzle” class, as
it can be observed from aggregate relationship presented in diagram.

Depth first iterative deepening search strategy is implemented by using “IDSStrategy” class. An
instance of this class is composed by two instances of “ExploredNodePuzzle” class, according to
composition relationship which exists in diagram, but can also contain instances of
“ExpandedNodePuzzle” class, as it can be observed from aggregate relationship presented in diagram.

For realizing the two windows that will compose the graphical interface of the aplication, there
were implemented the following two classes: „Resolution” for the main window and „Simulation” for
the simulation of the three uninformed search strategy. We can observe that the „Simulation” class
implements the „Runnable” interface. An instance of this class is composed by one instance of
„Resolution” class, two instances of “StatePuzzle” class and two instances of “ExploredNodePuzzle”
class, according to composition relationship which exists in diagram, but can also contain instances of
“BFSStrategy”, “DLSStrategy” and “IDSStrategy” classes, as it can be observed from aggregate
relationship presented in diagram.

Figure 2. Class Diagram

GRAFICAL INTERFACE OF THE INTERACTIVE SOFTWARE
The interactive software is accomplished using the Java programming language [10]. The

application can easily convert in a Java applet. Given that specified requisites in uses cases diagram
(figure 1) it was designed graphical user interface of the interactive software.

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 146

A configuration on the game table which has to be solved can be introduced by the user or can
be automatically generated, is being solved by using the implemented algorithm. In figure 3 is
presented the main window of the application, a “Resolution” class instance which contains
components that specify the start state, the goal state and an intermediary state of solution, list for
viewing the solution obtained by using breadth first search strategy, depth limited search strategy
and depth first iterative deepening search strategy, but and also components for comparing the three
variances of uninformed search strategies from the point of view of space and time complexity.

In figure 3 are generated the solutions of a configuration which are introduced from the standard
input by using the three uninformed search strategies, the optimal solutions is being obtained in 5
steps.

By selecting the button “Simulare BFS” is instancing an object of “Simulation” class which permits
simulation of breadth first search strategy. In figure 4 is presented an instance of “Simulation” class,
window which permit viewing the way of modifying the open and closed lists for solving a given
configuration. The optimal solution for presented example is obtained in 3 steps. For the final step is
presented the optimal node from the open list together with its successors. This optimal will be
inserted into the closed list after elimination from the open list. Into the open list will be inserted all
nodes from successors list that don’t have associated a redundant state. Each node is displayed
together with the values of the function used by the strategy: the path cost from the start node to
current node G.

Figure 3. The main window of the interactive software

Figure 4. Breadth first search strategy simulation

By selecting the button “Simulare DLS” is instancing an object of “Simulation” class which
permits simulation of depth limited search strategy. In figure 5 is presented an instance of
“Simulation” class, window which permit viewing the way of modifying the open and closed lists for
solving a given configuration. The optimal solution for presented example is obtained in 3 steps.

By selecting the button “Simulare IDS” is instancing an object of “Simulation” class which
permits simulation of depth first iterative deepening search strategy. In figure 6 is presented an
instance of “Simulation” class, window which permit viewing the way of modifying the open and
closed lists for solving a given configuration. The optimal solution for presented example is obtained
in 3 steps.

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 147

Figure 5. Depth limited search strategy simulation

Figure 6. Depth first iterative deepening search strategy simulation

COMPARISON OF EFFICIENCY OF SELECTED STRATEGIES
 Because one of the objectives of this paper is to compare the efficiency of selected strategies,

the presented results have been obtained using each strategy with the most suitable parameters.
In table 1 are analysed the statistic results regarding the number of the explored nodes by the

three uninformed search strategies, in the tables are also presented the minimum number of nodes,
the maximum number of nodes and the average value of the explored nodes number which need
between 1 and 6 steps. For presenting the efficiency of the depth first iterative deepening search
strategy from the explored nodes number point of view there are represented graphical the
experimental values obtained for solutions with steps between the interval [1,6] in figure 7.

Table 1. Number of the explored nodes
 Explored Nodes
 BFS Strategy DLS Strategy IDS Strategy

Number
of steps Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

1. 3 5 4 3 5 4 3 5 4
2. 9 17 10 6 29 18 6 8 7
3. 18 33 26 9 57 43 9 27 17
4. 49 94 82 11 63 33 11 39 24
5. 145 240 192 21 80 43 21 80 43
6. 240 830 519 789 1657 989 32 128 66

Figure 7. Explored nodes comparing Figure 8. Expanded nodes comparing

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 148

Table 2. Number of the expanded nodes
 Expanded Nodes
 BFS Strategy DLS Strategy IDS Strategy

Number
of steps Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

1. 1 1 1 1 1 1 1 1 1
2. 3 5 4 2 18 10 2 4 3
3. 6 11 8 3 47 26 3 17 9
4. 17 34 24 4 38 19 4 22 12
5. 51 86 65 9 49 24 9 49 24
6. 86 288 180 345 764 564 16 78 41

In table 2 are analysed the statistic results regarding the number of the expanded nodes by the
three uninformed search strategies, in the tables are also presented the minimum number of nodes,
the maximum number of nodes and the average value of the expanded nodes number which need
between 1 and 6 steps.

For presenting the efficiency of the depth first iterative deepening search strategy from the
expanded nodes number point of view there are represented graphical the experimental values
obtained for solutions with steps between the interval [1,6] in figure 8.
CONCLUSIONS

The main purpose in accomplishing of this study was designing and implementing of didactic
interactive software that must lead the user to obtain experience in comprehending and
acknowledgment accumulating existing in uninformed search strategies of state space solutions.

From experimentally results by using the depth first iterative deepening search strategy, an
improvement in space complexity of uninformed search strategy versus breadth first search strategy
and depth limited search strategy was observed. In the three cases the generated solution is obtained
using an optimal number of steps.

Theme that is treated into this study is very actually, the artificial intelligence being an
important component for forming the young engineers.
REFERENCES
[1] R. Akerkar, Introduction to Artificial Intelligence, Prentice-Hall of India Private Limited, New

Delhi, 2005
[2] W. Ertel, Introduction to Artificial Intelligence, Springer-Verlag, Berlin, 2011
[3] E. Kumar, Artificial Intelligence, I K International Private Limited, New Delhi, 2008
[4] Z. Shi, Advanced Artificial Intelligence, Word Scientific Publishing, 2011
[5] M. Hutter, Universal Artificial Intelligence, Springer-Verlag, Berlin, 2005
[6] B. Eckel, Thinking in Java, Prentice Hall, 2003
[7] http://argouml.tigris.org
[8] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison

Wesley, 1999
[9] M. Fowler, K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling Language,

Addison Wesley, Readings MA, USA, 2000
[10] K. Arnold, J. Gosling, The Java Programming Language, Addison-Wesley, 1998

ANNALS of Faculty Engineering Hunedoara

– International Journal of Engineering

copyright © UNIVERSITY POLITEHNICA TIMISOARA,
FACULTY OF ENGINEERING HUNEDOARA,

5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://annals.fih.upt.ro

