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ABSTRACT: Predictive modeling of plant species’ distributions based on their relationship with 
environmental variables is important for a range of management activities. Examples include 
management of threatened species and communities, risk assessment of non-native species in new 
environments and the estimation of the magnitude of biological responses to environmental changes. 
Variability is one of the intrinsic characteristics of the soil properties. Within an ecosystem, soil 
properties have vast spatial variations which mainly arise from factors and processes of pedogenesis 
and land use. Spatial variability in the soil is natural, but understanding these changes, particularly in 
agricultural lands for planning and management is inevitable. Soil properties change with time and 
space of the small scales to large scales, which are influenced by intrinsic properties (such as soil 
parent materials) and non-inherent characteristics (such as management, fertilizer and crop rotation). 
To plants predictive mapping, it is necessary to prepare the maps of all affective factors of models. 
Geostatistics is a useful tool for analyzing the structure of spatial variability, interpolating between 
point observations and creating the map of interpolated values with an associated error map. In this 
paper, we are focusing on the spatial variation of plant diversity with respect to soil and 
environmental impacts. 
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INTRODUCTION - DEFINITIONS AND BASIC CONCEPTS 

Geostatistics is a subset of statistics specialized in analysis and interpretation of geographically 
referenced data [18, 21, 36, 50]. In other words, geostatistics comprises statistical techniques that 
are adjusted to spatial data. One of the main uses of geostatistics is to predict values of a sampled 
variable over the whole area of interest, which is referred to as spatial prediction or spatial 
interpolation.  

Note that there is a small difference between the two because prediction can imply both 
interpolation and extrapolation [21]. An important distinction between geostatistical and 
conventional mapping of environmental variables is that the geostatistical prediction is based on 
application of quantitative, statistical techniques. Unlike the traditional approaches to mapping, 
which rely on the use of empirical knowledge, in the case of geostatistical mapping we completely 
rely on the actual measurements and (semi-) automated algorithms. Although this sounds as if the 
spatial prediction is done purely by a computer program, the analysts have many options to choose 
whether to use linear or non-linear models, whether to consider spatial position or not, whether to 
transform or use the original data, whether to consider multicolinearity effects or not. So it is also an 
expert-based system in a way. In summary, geostatistical mapping can be defined as analytical 
production of maps by using field observations, auxiliary information and a computer program that 
calculates values at locations of interest [21]. 

Ideally, variability of environmental variables is determined by a finite set of inputs and they 
exactly follow some known physical law. If the algorithm (formula) is known, the values of the target 
variables can be predicted exactly. In reality, the relationship between the feature of interest and 
physical environment is so complex that it cannot be modelled exactly [21]. This is because we either 
do not exactly know: (a) the final list of inputs into the model, (b) the rules (formulas) required to 
derive the output from the inputs and (c) the significance of the random component in the system. So 
the only possibility is that we can try to estimate a model by using the actual field measurements of 
the target variable [21]. 

Environmental variables are quantitative or descriptive measures of different environmental 
features. Environmental variables can belong to different domains, ranging from biology (distribution 
of species and biodiversity measures), soil science (soil properties and types), vegetation science 
(plant species and communities, land cover types), climatology (climatic variables at surface and 
beneath/above), hydrology (water quantities and conditions) and similar [21]. They are commonly 
collected through field sampling (supported by remote sensing), which are then used to produce maps 
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showing their distribution in an area. Such accurate and up-to-date maps of environmental features 
represent a crucial input to spatial planning, decision making, land evaluation or land degradation 
assessment [21].  

In the case of plants and animals, 
geostatistical mapping becomes much 
more complicated. Here, we deal with 
distinct physical objects (individuals), 
often immeasurable in quantity. In 
addition, animal species change their 
location dynamically, often in 
unpredictable directions and with 
unpredictable spatial patterns (non-
linear trajectories), which asks for high 
sampling density in both space and time 
domains [21].  

In vegetation mapping, most 
commonly field observations of the 
plant occurrence (ranging from 0 to 
100%) are recorded (Figure 1). In 
addition to mapping of temporary 
distribution of species, biologists aim at developing statistical models to define optimal ecological 
conditions for a certain species. This is often referred to as habitat mapping and can be also dealt 
with geostatistics. Occurrence of species or habitat conditions can also be presented as continuous 
fields, i.e. using raster maps [21]. 
DISTRIBUTION OF PLANT SPECIES - REGRESSION MODELS 

The analysis of species–environment relationship has always been a central issue in ecology [52]. 
Climate in combination with other environmental factors has been much used to explain the main 
vegetation patterns around the world. The quantification of such species– environment relationships 
represents the core of predictive geographical modeling in ecology [52]. These models are generally 
based on various hypotheses as to how environmental factors control the distribution of species and 
communities [2]. Regression methods relate species response to single or multiple environmental 
predictors. These methods include frequently used approaches such as logistic regression [22], 
generalized additive modeling [20], and classification and regression tree [8]. Guisan and Zimmermann 
[19] presented a comprehensive review and classified the methods into two categories: (1) regression-
based methods; and (2) environmental envelope methods. Logistic regression is a frequently used 
regression method for modelling species distributions [19, 41]. This is a particular case of Generalised 
Linear Models [29].  

Generalised Linear Models (GLM) has been recognized in ecology for some time as having great 
advantages for dealing with data with different error structures particularly presence/absence data 
that is the common type of data available for spatial modelling of species distributions [35,41]. In the 
other hands, logistic regression 
is one of the methods that can 
predict the probability of 
occurrence of each plant species 
related to site condition factors 
[52]. Ecologists believe that the 
relationships between plant 
species and environmental 
factors are non-linear [30].  

Function of logistic 
regression is a sigmoid curve. 
This method has been used by 
Wu and Huffer  [51], Bio et al 
[5], Austin et al [3], Carter et al 
[10],  Zare Chahouki and Zare 
Chahouki [52], for predictive 
species modeling. Based on 
obtained predictive models for 
each species (through LR 
method) related predictive 
maps will be prepared in GIS 
(Figure 2). Logistic regression 

 
Figure 1. Example of a geostatistical mapping of occurrence 

of sister (plant) species (After [27] and [21]) 

 
Figure 2. Predicted map of vegetation types provided by logistic 

regression (Example from [52]) 
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(LR) is a kind of generalized linear model (GLM) suitable for analysis when response data are binary. It 
uses a logit link to describe the relationship between the response and the linear sum of the predictor 
variables [31]. This is accomplished by applying the following regression equation, in which 
presence/absence of an object is transformed into a continuous probability y ranging from 0 to 1. 

Values close to 1 represent high probability of presence, whereas values close to 0 represent 
high probability of absence. In order to discrete y into presence and absence, a posterior threshold is 
assigned. Occurrence probability of each plant species is calculated with respect to the combined 
effect of site conditions with the following equations: 
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where: Y is the probability; xn is explanatory variable; b0 is the constant; and exp is an exponential 
function. 
MULTI-SPECTRAL SATELLITE IMAGE CLASSIFICATION 

One approach to describing the spatial patterns of plant diversity in landscape mosaics consists 
of accounting for the diversity within and between particular habitats that could be considered 
homogeneous communities [24]. On the one hand, plant diversity is estimated inside each of these 
habitats. On the other, the dissimilarity (or complementarity) between such habitats is also 
estimated. The most commonly employed measures for estimating the diversity of species in a 
community are those related to species richness (i.e., the number of species present in an area) and 
measures based on species frequencies or abundance, including Shannon and Simpson indices [24]. One 
of the main problems in comparing the number of species among communities is that species richness 
is not independent of the sample size. The number of species increases with the size of the area 
sampled. Therefore, to make comparable the number of species among different habitat types, it is 
necessary to employ the same sampling effort in every one of them [24].  

Another problem in measuring biological diversity is presented by the difficulties and effort 
required for sampling large areas of densely forested landscapes, particularly when access to some 
particular sites is difficult, which is the case of most tropical forests [14, 15]. However, combining 
ground surveys with the support from remote sensing image analysis has proven to be a very useful 
tool for solving the numerous practical problems involved in this type of undertaking [24]. So, multi-
spectral satellite images can be used for identifying and mapping land cover classes (Figure 3).  

Such classes can be taken, in a broad sense, as being equivalent to habitats. Mapping such 
classes offers several advantages in the assessment of biodiversity over the landscape. First, the 
diversity within the mapped classes can be assessed relatively easy through field measurements. 
Second, land cover classes could be sufficiently linked to species composition and abundance in those 
particular areas over the landscape [24, 34].  
SPATIAL VARIABILITY OF PLANT DIVERSITY 

The spatial distribution of species can be estimated through several approaches. One of the 
most common approaches is to assess species diversity based on the average values of computed 
diversity indices, as obtained from the 
diversity measurements within 
vegetation or land cover classes [25]. 
In this method, the mapped classes are 
viewed as habitats and the diversity 
within those classes is assessed 
through field samples. Then, species 
composition and abundance are both 
referred to such mapped classes [25].  

Researchers and practitioners 
have used vegetation or land cover 
classes to analyze the spatial 
distribution of plant species [25, 47] 
of animal species [32] or they have 
considered both, plant and animal 
species [14, 15].  

This approach implicitly uses the 
mean values of classes as spatial 
interpolators by assigning the average 

 
Figure 3. Land cover map showing the six vegetation types 
mapped from a supervised classification (Prepared by [24) 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 172 

values of the diversity indices measured at different locations to the entire area covered by those 
classes [6, 46].  

Figure 4 showing the proportion of variance (semivariance) found at increasing distances of 
paired soil samples (lag distances). The random model is expected when soil properties are randomly 
distributed. The spherical model is expected when soil properties show spatial autocorrelation over a 
range (Ao) and independence beyond that 
distance. Total variance is the sum of the 
variation explained by the spatial model (C) 
and the variation found at a scale finer than 
the field sampling (nugget variance Co). 

One of the main concerns of this 
approach, aside from the simplification of 
having a single mean value predicting all non-
measured points within each class, is that it 
assumes independence of the samples, i.e. it 
does not account for spatial dependence and 
auto-correlation. Yet, species composition is 
often influenced, at any given location, by 
the structure of species at surrounding 
locations, due to contagious biotic processes such as growth, reproduction, mortality, etc. [28]. In 
such cases, it is reasonable to assume that the values of diversity from points closer together are 
often more similar than those farther apart. Therefore, the assumption of spatial independence of 
samples is not realistic due to the presence of spatial autocorrelation [25]. 

Geostatistical techniques are useful in providing estimates of sampled attributes at unsampled 
locations from sparse information [7]. These methods are based on knowledge of the spatial structure 
of the phenomenon, which is obtained through spatial autocorrelation or auto-covariance functions, 
such as semi-variograms (Figure 4).  

 
Figure 5. Standard deviation maps of estimates of number of species and exponent Shannon using 

geostatistics (Example from [25]) 
Estimating values between measured points follows the semivariogram estimation, based on the 

degree of spatial autocorrelation or covariance found in the data [25]. Geostatistical techniques have 
been useful for characterizing the spatial distribution and mapping of soil properties [9] and of 
climatic data [38]. They have been also applied to ecological studies such as in the prediction of forest 
volume [48], or the characterization of the spatial structure of vegetation communities [25] (Figure 
5). 
SPATIAL VARIABILITY OF SOIL PROPERTIES AND PATTERNS OF MINERALS AVAILABILITY 

Within an ecosystem, soil properties have vast spatial variations which mainly arise from factors 
and processes of pedogenesis and land use [42]. Environmental heterogeneity is often essential for the 
coexistence of species [17]. Numerous researchers have proposed a positive correlation between envi-
ronmental variability and species richness (for example [11]). In plant communities, this correlation 
may be explained, at least partially, by variation in below ground resources. Variation of soil 
resources at the individual scale is likely to affect the local distribution and abundance of plant 
species and the performance of individual organisms and, therefore, to have important consequences 
for both communities structure and ecosystem level processes [17, 43]. 

Soil properties can vary dramatically within plant communities [40]. Soil pH, organic matter 
content, and assorted mineral element concentrations have been shown to vary in some communities 
by an order of magnitude at spatial scales of 5 m or less (e.g. [44]), and in a number of cases this 
variation has appeared to be associated with changes in plant species distributions (e.g. [23]). Such 

 
Figure 4. Schematic diagram of a semi-variogram 
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results suggest that nutrient cycling properties in natural and recently disturbed systems are spatially 
complex, and moreover that this complexity may significantly affect plant community structure. 
Hypotheses that plant communities are structured largely in response to the availability of limiting 
nutrients [40] take these suggestions one step further.  

Such hypotheses argue that spatial patterns of 
nutrient availability constitute a critical component of the 
structure of plant communities, though this variability has 
yet to be comprehensively quantified [40]. To evaluate 
potential relationships between patterns of nutrient 
cycling and community structure in natural plant 
communities first requires the demonstration that nutrient 
availability can vary significantly across the community 
(Figure 6). 

Soil testing has been the method most used to 
determine the spatial distribution of plant nutrient 
element availability within fields [13]. Soil testing is a 
more commonly used tool for determining plant nutrient 
element needs than plant analysis based on the numbers of 
samples analyzed annually by the nation's laboratories 
[26]. The timing of plant sampling is critical in establishing 
critical nutrient element levels for the crop [13], while the 
timing of soil sampling is not as critical, giving samplers a 
longer period of time to work and gather samples [37, 39]. 

Plant sample preparation in the laboratory may 
require strong acids to dissolve plant tissue and free 
elements for analysis, while most soil testing procedures require less caustic extractants, making soil 
testing somewhat safer for technicians and less expensive to conduct. Critical levels of nutrient 
elements within plants in relation to plant nutrient element availability are similar regardless of 
where the plants are grown, making plant analysis more universal than soil testing [12]. A soil analysis 
may be misleading because of interactions not explained by the test procedure, soil moisture levels, 
nutrient interactions, and soil physical characteristics [1] which may affect the response of crops to 
fertilizer applications beyond responses predicted by the soil test correlation model. Plant analysis 
results reflect the actual uptake of a nutrient element by the crop, and therefore not as clouded by 
soil uncertainties [13, 33]. 

 
Figure 7. Total soil N content (Example from [45]) 

Much attention has been paid to studying the nutrient properties in different areas and plots, 
dealing with total nutrient content, their forms and variability in the soil profile, with respect to 
their availability to plants [45]. In recent years the attention has been focused on spatial variability 
of nutrients in soils, comparing different ground covers and locations [16, 49]. Differences in this 
characteristic were compared between individual plots, as well as within a plot; they were related to 
the possibility of exact identification of the plot and its parts and further usage of these data for 
specific measures, locally applied [4]. Apart from the spatial variability of the nutrient content of soil 
it is important to study its changes with time (Figure 7); these changes are clearly more distinct at 
labile forms, whose conclusiveness is time-limited. Knowledge of these facts might be useful as a basis 
for fertilization management practices [45]. 

 
Figure 6. Isopleths for N mineralization 

potentials across the study site. 
Estimation standard deviations for 

interpolated point (Example from [40]) 
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CONCLUSIONS 
The aim of this study is to review the spatial variation of plant diversity with respect to soil and 

environmental impacts. Some of conclusions can be summarized as follows: 
 Geostatistical techniques have been useful for characterizing the spatial structure of vegetation 

communities.  
 Geostatistics does obviously not offer a statistical model which is advantageous in every situation. 

Careful analysis of the measurement data using common sense can some times result in the same 
conclusions as those resulting from lengthily and computationally heavy calculations. In general, 
as spacing between samples is large compared to the dimensions of the investigated field, the 
potential advantageous of a geostatistical analysis becomes less. 

 Logistic regression is a suitable method in prediction of different plant species occurrence. Based 
on the prediction models, it is possible to estimate the probability of presence/absence of plant 
species in response to environmental factors. 

 The identification of vegetation classes on the field and their mapping using satellite image 
classification were found to discriminate and separate significantly different specie compositions, 
in such a way that they can provide a useful mechanism for interpolating, and up-scaling values of 
diversity indices over the entire landscape at unvisited locations within a given class. 

 Variation of soil resources at the individual scale is likely to affect the local distribution and 
abundance of plant species. 
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