

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA 273

1. Corina Daniela CUNŢAN, 2. Ioan BACIU

EXPERIMENTAL MODEL FOR OPTICAL HIGHLIGHTING OF
DATA INPUT IN THE MEMORY OF A MICROCONTROLLER

1-2. UNIVERSITY POLITEHNICA TIMIŞOARA, FACULTY OF ENGINEERING HUNEDOARA, ELECTRICAL ENGINEERING AND INDUSTRIAL
INFORMATICS DEPARTMENT, ROMANIA

ABSTRACT: Using microcontrollers in the industrial processes has a high dynamics in the current period.
For these reasons, the paper presents a microcontroller programming with optical highlighting of its
operation. The application uses an ATmega64 microcontroller, which commands the sequentially entry
of 8 bits, and highlights it by optical LED display. The sequentially entry is made in both directions,
the entry selection being realized manually, with the possibility to reset at any time the entered
sequence. The application is provided with its own voltage stabilizer, to protect the microcontroller
and to supply the required power in case of maximum power consumption when setting maximum
number of outputs.
KEYWORDS: microcontroller, optical LED display, testing program

INTRODUCTION

A microcontroller is a circuit realized on a single chip, typically containing: the central
processing unit, the clock generator (to which a quartz crystal must be added from outside) or, in less
demanding applications, a RC circuit), volatile memory (RAM), nonvolatile memory
(ROM/PROM/EPROM/EEPROM), I/O serial and parallel devices, interrupt controller, DMA controller,
counters / timers, A/D and D/A converters, etc., peripherals.

With a MC, we can realize an integrated controller
(Embedded Controller, EC). An embedded controller is part of a
system built for a specific purpose, other than usual general
calculations. Besides the MC, an embedded controller requires
an additional hardware to perform its function.[1]

A microcontroller can be defined based on its simplified
representation. (Fig. 1)

As inputs, we are usually using signals from individual
switches or from transducers (temperature, pressure, photo,
specialized transducers). The inputs can be digital or analog. The
digital inputs convey discrete signals, the information "read"
being the information to be sampled when reading that line. The
analog inputs convey the information expressed by continuous
functions of time. "Reading" them by the microcontroller
requires the presence of circuits able to process this information, i.e. analog comparators or analog-
to-digital converters, whose outputs are read by MC.

The outputs can be analog, in which case they actually represent outputs of the analog-to-
digital converters, or digital, in which case the information is generally stored on them until a new
entry is operated by UC at a port of MC. The outputs can control display devices, relays, motors,
loudspeakers, etc.[1]
PRESENTATION OF THE PAPER

The paper presents a programming modality of an ATmega64 microcontroller, and a modality to
optically view the sequentially entry in its memory.

The application uses an ATmega64 microcontroller that commands the sequentially entry of 8-
bit sequences and highlights it by optical LED display. (Fig.2 - Wiring diagram of the microcontroller
application).

To highlight the data entry, which is carried out by hand with the buttons B1-B10 connected to
the pins 25-34, we connect one LED per output. For each group of 8 outputs, the LEDs are connected
with the common cathode, circuit that closes to ground through a resistor whose role is to limit the

 Programs

 Memory

Central
processing

unit

Clock generator

Input

Output

Figure 1. Simplified diagram

of a microcontroller

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 274

output current. Each group of 8 outputs is entered into the microcontroller by means of 2 buttons,
one allowing the direct entry and the other one the reverse entry of data.

Figure 2. Wiring diagram of the microcontroller application

Figure 3. Block diagram of the microcontroller

With the Reset button (BR), we can reset the sequence of data entered up to that point.
To enter the program in the microcontroller memory, it was provided a connector (CP) that

connects the above-presented circuitry with the microcontroller programmer.

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 275

The application is provided with its own power supply, realized with a voltage stabilizer of 5V,
type 7805. The stabilizer is supplied via a rectifier diode used for reverse supply protection.[3]

 It is also provided with accidental voltage peaks decoupling capacitors, located at the power
source output and the power supply pin of the microcontroller (Pin no. 21).

The microcontroller operation is highlighted by a program written in C language, which is
transferred to the microcontroller memory by means of a programming circuit.

The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega64 achieves
throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize the power
consumption versus the processing speed. [2](Fig. 3)

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than
conventional CISC microcontrollers.[2]

The ATmega64 provides the following features: 64 Kbytes of In-System Programmable Flash with
Read-While-Write capabilities, 2 Kbytes EEPROM, 4 Kbytes SRAM, 53 general purpose I/O lines, 32
general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with
compare modes and PWM, two USARTs, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit
ADC with optional differential input stage with programmable gain, programmable Watchdog Timer
with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used
for accessing the On-chip Debug system and programming, and six software selectable power saving
modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and the
interrupt system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In
Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer
base while the rest of the device is sleeping.

The ADC Noise Reduction mode stops the CPU and all I/O modules, except the asynchronous
timer and ADC, to minimize switching noise during the ADC conversions. In Standby mode, the
crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator
and the asynchronous timer continue to run.[2]

The device is manufactured using Atmel’s high-
density nonvolatile memory technology. The On-chip ISP
Flash allows the program memory to be reprogrammed In-
System through an SPI serial interface, by a conventional
non-volatile memory programmer, or by an On-chip Boot
program running on the AVR core. The Boot Program can
use any interface to download the Application Program in
the Application Flash memory. The software in the Boot
Flash section will continue to run while the Application
Flash section is updated, providing true Read-While-Write
operation. [2]

By combining an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the Atmel
ATmega64 is a powerful microcontroller that provides a
highly-flexible and cost-effective solution to many
embedded control applications.

The ATmega64 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/ Simulators, In-Circuit Emulators, and
Evaluation kits.

The configuration of the ATmega64 microcontroller pins (Fig. 4) imposes the programming
mode.

By successively pressing the B1 button connected to the pin no. 25, we can set the sequential
outputs 10-17, and by successively pressing the B2 button we can set, in reverse order, the same
outputs. In the same way, by pressing the buttons B3 and B4 we set the outputs 2-9, the buttons 5 and
6 set the outputs at the pins 54-61, by means of the buttons 7 and 8 we set the outputs 44-51, and
with the buttons B9 and B10 we set the outputs 35-42. This order is provided by the C programming
language so that, by pressing the button, the LED afferent to the selected output lights up. [2][4]
#include <avr/io.h>
int main (void)
{ int x,y, yy;
 DDRA |= 0xFF; // Set LED as output

Figure 4. Configuration of the pins

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 276

 DDRB |= 0xFF; // Set LED as output
 DDRC |= 0xFF; // Set LED as output
 DDRE |= 0xFF; // Set LED as output
 DDRF |= 0xFF; // Set LED as output
 DDRD = 0b00000000;
 PORTD = 0b11111111;
 DDRG = 0b00000000;
 PORTG = 0b00000011;
 TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu/64
 for (;;)
 { x=PIND; y=PING;
 // Check timer value in if statement, true when count matches 1 second
 if ((TCNT1 >= 16000))
 { yy = y | 0b11111101; yy ^= 0b11111101;
 if(yy==0b00000000)
 {PORTC = PORTC << 1;
 //PORTC |= 0b10000000; }
 yy = y | 0b11111110; yy ^= 0b11111110;
 if(yy==0b00000000)
 { PORTC = PORTC >> 1; PORTC |= 0b10000000; }
 yy = x | 0b01111111; yy ^= 0b01111111;
 if(yy==0b00000000)
 { PORTA = PORTA << 1;
 //PORTA |= 0b10000000; }
 yy = x | 0b10111111; yy ^= 0b10111111;
 if(yy==0b00000000)
 { PORTA = PORTA >> 1; PORTA |= 0b10000000; }
 yy = x | 0b11011111; yy ^= 0b11011111;
 if(yy==0b00000000)
 { PORTF = PORTF << 1;
 //PORTF |= 0b10000000; }
 yy = x | 0b11101111; yy ^= 0b11101111;
 if(yy==0b00000000)
 { PORTF = PORTF >> 1; PORTF |= 0b10000000; }
 yy = x | 0b11110111; yy ^= 0b11110111;
 if(yy==0b00000000)
 { PORTE = PORTE << 1;
 //PORTE |= 0b10000000; }
 yy = x | 0b11111011; yy ^= 0b11111011;
 if(yy==0b00000000)
 {PORTE = PORTE >> 1;
 PORTE |= 0b10000000; }
 yy = x | 0b11111101; yy ^= 0b11111101;
 if(yy==0b00000000)
 { PORTB = PORTB << 1;
 // PORTB |= 0b10000000; }
 yy = x | 0b11111110; yy ^= 0b11111110;
 if(yy==0b00000000)
 { PORTB = PORTB >> 1; PORTB |= 0b10000000; }
 TCNT1 = 0; // Reset timer value }}}
CONCLUSIONS

In this paper, we highlighted the possibility of data entry into the microcontroller memory.
The data entry is realized sequentially, bit-by-bit, from the control buttons, each output being
optically visualized with a LED corresponding to the set bit.

The entry of information in the microcontroller memory is performed on each byte, with the
possibility to change the direction of entry by means of two buttons for each set of 8 bits.

The circuit is provided with a button for general reset of the presented application and of the
programmer used to enter the program in the microcontroller memory.

For additional protection of the microcontroller, it was provided its own power supply circuit
containing decoupling capacitors on the supply pins of the microcontroller.
REFERENCES
[1] http://www.unitbv.ro/faculties/biblio/interfete_specializate/curs.pdf
[2] http://www.atmel.com/Images/Atmel-2490-8-bit-AVR-Microcontroller-ATmega64-L_datasheet.pdf
[3] Ciugudean M., Voltage Stabilizers with linear integrated circuits. Sizing, Publisher: Editura de
Vest, Timişoara, 2001.
[4] http://www.circuitstoday.com/avr-microcontroller-tutorial

