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ABSTRACT: Genetic and Evolutionary Algorithms have been implemented so far to manufacturing tasks 
as optimization modules. Genetic and Evolutionary Algorithms are based on the concept of natural 
selection of species to later produce new individuals. However, different selection mechanisms 
between species may occur when other populations are incorporated to already existed ones. This 
paper presents a Genetic Algorithm based on the Virus theory of Evolution. The main work-flow of the 
algorithm is described and implemented to a benchmark mathematical function. Moreover, the 
module is incorporated to a CAM system's platform in order to address several machining optimization 
scenarios for sculptured surfaces. The integration is achieved through the development of automation 
routines which handle appropriate sets of CAM objects exposed to the Application Program Interface 
(API). The quality characteristic in this study is the volume remaining after roughing phase. The 
results verified that the incorporation of virus operators to a genetic algorithm can considerably 
increase its optimization abilities by producing more effective schemata, hence; minimizing 
computational time whilst converging to global optimum. 
KEYWORDS: Virus Evolutionary Genetic Algorithm (VEGA), Sculptured Surface Machining, Optimization, 
CAM systems 
 
INTRODUCTION 

A vast number of intelligent algorithms and meta heuristics have been associated to 
manufacturing optimization problems, usually combinatorial. Such algorithms are Genetic and 
Evolutionary Algorithms (GAs-EAs) [Goldberg, 1989], Simulated Annealing (SA) [Kirkpatrick, Gelatt and 
Vecchi, 1983], Tabu search (TS) [Glover, 1989-90], Ant Colony Optimization (ACO) [Dorigo and Blum, 
2005] and Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 1995]. Each of these approaches 
have been implemented by researchers to several fields of manufacturing optimization. [Davis, 1985] 
moved towards the optimum job shop scheduling formulation through a genetic algorithm. [Pare, 
Agnihorti and Krishna, 2011] controlled the surface finish by optimizing cutting parameter selections 
in end milling through a (PSO) algorithm.  [Rao, Pawar, and Davim 2010] employed SA techniques to 
optimize process parameters of mechanical type advanced machining. ACO was implemented by [Cus, 
Balic and Zuperl, 2009] for the optimization of process parameters when turning. 

All the approaches mentioned above simulate natural phenomena while others mimic mechanics 
of processes such as the annealing of metals (Simulated Annealing). GAs-EAs represent the most 
popular artificial intelligence and evolutionary computation systems, yet; based on Darwin's evolution 
theory. With the progress of molecular biology, various theories of evolution such as Neo-Darwinism, 
neutral theory of molecular evolution, Imanishi's evolution theory, serial symbiosis and virus theory of 
evolution [Anderson, 1970]; [Nakahara and Sagawa 1989]; [Ridley, 1993] research conducted aiming at 
contributing to optimization through the development of artificial intelligent algorithms based on 
these theories.  

This paper proposed a modified virus evolutionary genetic algorithm (mVEGA) for the rough 
machining optimization of sculptured surfaces with the use of CAM software. Typical process 
parameters are examined (cutting speed, feed rate, axial and radial cut depths, cutting tool, etc) 
whilst the quality objective is the volume remained on the ideal model yet; to be removed by 
finishing operations. 
GENETIC AND EVOLUTIONARY ALGORITHMS 

Genetic Algorithms (GAs) are optimization modules based on the concept of the natural 
selection through evolution, as introduced by Darwin. Genetic Algorithms operate on a population 
which reflects a set of candidate solutions by applying the principle of “survival of the fittest” 
[Holland, 1992] to produce better approximations to a solution of a given optimization problem. GAs 
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have stochastic characteristics that offer the ability of tracing optimized solutions within a given 
solution space. This ability is known as "exploration". Populations evolved in iterations, called 
“generations”. A new population (the off-spring), is occurred in each generation by applying 
mathematical operators on the old population. Such operators are crossover, mutation, inversion, etc. 
Evolutionary Algorithms (EAs) are in fact generalized GAs and include more sophisticated operators 
than the ones operated in GAs and may possibly employ other deterministic or heuristic modules to 
reduce evaluation cost or increase the overall system's performance in terms of solution quality and of 
high solution exploitation. Exploitation is another ability of Genetic or Evolutionary Algorithms that 
characterizes the rapid arrival at global optima after tracing local optima within the solution space. 
Exploration and exploitation characteristics of GAs-EAs are depicted in Figure 1.  
 The criterion by which candidate 
solutions in EA populations are evaluated is 
the objective function. When it comes to a 
scalar type of an objective function the 
optimization approach is a single-objective 
one; whilst when it comes to a vector type of 
an objective function the optimization 
approach is a multi-objective one. The 
solutions ranking in the latter approach is 
often based on Pareto optimality. As 
optimization modules, GAs and EAs perform 
specific operations like working on a population of strings. These strings contain in an encoded type, 
the candidate solutions. GAs and EAs do not need derivative information; they need only fitness value. 
Common genetic operators existed in a simple GA structure are one of the selection schemes, a simple 
crossover type (i.e. one-point crossover) and a simple mutation. It has to be mentioned that for each 
operator several types are existed and described in a later section of this study.  
 The overall performance of Genetic and Evolutionary Algorithms is strongly influenced by 
artificial functions like the encoding type of chromosomes, the genetic operators (mainly crossover 
and mutation) and ranking of fitness values. In machining optimization where problems become more 
complicated multi-tasked and conflicted, an implementation of a simple GA-EA would not be robust 
enough, hence; a means of reinforcing a GA’s – EA’s structure is sought so as to meet the demands and 
arrive at global optimum. Several mechanisms have been proposed so far in order to enhance Genetic 
and Evolutionary Algorithms [Syswerda, 1991], [Manderick and Spoessens 1991]. 

Prior to the implementation of a GA or an EA to an optimization problem, potential solutions 
should be properly encoded to facilitate their computational processing. Three basic types for 
encoding are found in the literature, Binary; Real valued and Gray-binary encoding [Wright, 1991]; 
[Fogel, 1995]. In the case of binary encoding type the chromosomes are represented by stings 
consisted of “0” and “1” digit sequences. Each digit in the sequence reflects a value of a probable 
solution. Binary encoding type is the most common to represent information contained. Encoding using 
real values for a candidate solution represents chromosomes as a sequence of real numbers [Wright, 
1991]; [Michalewicz, 1992]. This type of chromosome representation may be applied when the 
optimization problem is such that there is no need to convert chromosomes to phenotypes (their real 
numbers). Gray-binary encoding is quite similar to Binary one with the only difference that two 
successive digits differ in only one bit. Gray-binary encoding type can be beneficial in an optimization 
task when mutations permit incremental modifications, thus a single digit-change may cause strong 
changes which may lead to different solutions. 
GENETIC OPERATORS 

Genetic diversity (position of candidate solutions within the search space) can be maintained 
through the respective genetic operators. The genetic operators a Genetic or an Evolutionary 
Algorithm may utilize are Selection, Crossover and Mutation [Goldberg, 1989]; [Holland, 1992]. 
Genetic Operators are applied on a population (number of chromosomes in one generation) or a group 
of populations. If the size of a population is small enough, then the possibility of each genetic 
operator to be performed (especially the crossover) becomes very low. As a matter of fact, only a 
small segment of the search space may be explored and the global optimum may never be reached.  
 Selection simulates the process of natural selection and GAs need a similar mechanism to make 
a population evolve towards a better direction of optimal solutions. The main procedure of a selection 
module is to reproduce a population by pre-selecting an individual with a selection probability 
proportional to its fitness value. In this kind of selection, an individual with a higher fitness can 
reproduce more offspring. Some of the most commonly used selection schemes are: Roulette wheel 
selection, Elitist selection, Tournament selection, Ranking selection, and Expected value selection.  
 Crossover generates new individuals as solution candidates in Gas. GAs can search the solution 
space mainly by using one of the crossover operators. With the absence of crossover operators, GAs 

 
Figure 1. Representation of exploitation and exploration 

characteristics of GAs-EAs 
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would be random search algorithms. The crossover operator exchanges each substring between two 
individuals and replaces old individuals with others of a new genotype. The recombination between 
two strings is performed according the type of crossover operator. Depending on the number of break-
points among individuals, the crossover mechanism recombines the strings of the genotype. Some of 
the crossover operators are, one-point crossover, multi-point crossover, uniform crossover, cycle 
crossover, and partially matched crossover.  

Mutation occurs as the replicating error in nature. In GAs, the mutation operator replaces a 
randomly selected character on the string with the other one. Mutation is performed regardless of 
individual fitness values. A classic mutation operation is the one-point changing per individual. 
Several mutation types are occurred in nature such as inversion, translocation and duplication. These 
are also the mutating mechanisms applied to GAs to simulate these phenomena. Mutation operators 
have great influence on a GA’s-EA’s performance because they seriously affect populations. GAs-EAs 
are able to search a global solution space, since the mutation mechanism randomly changes the strings 
of individuals. All types of genetic operators (selection, crossover and mutation) are extensively 
discussed in [Chipperfield, Fonseca and Fleming, 1992]. 
A MODIFIED VIRUS EVOLUTIONARY GENETIC ALGORITHM (mVEGA) 

Gas-EAs have a major drawback; that is the premature convergence when finding local optima 
within the search space and presenting it as the global one. The most important reason why this 
premature local convergence occurs in a population is that proportional selection operators applied to 
the mechanisms of GAs-EAs increase all schemata (effective and ineffective) thus; making them less 
efficient and reliable. In general, the Virus theory of evolution is relied on “Transduction” operation. 
Transduction is the process of transporting DNA segments across species. Hence, genetic changes 
occurred to a bacterium’s DNA chain when a becteriophage carries DNA segments from another 
bacterium and locates them to its DNA chain. Viruses found in nature can be such bacteriophages. 
Viruses have the ability to penetrate to species’ genetic material (DNA chain) and being transmitted 
directly from individuals of a phylum to another. This special ability of viruses to be transmitted 
directly from one kind to another is known as horizontal propagation. The incorporation of a host’s 
DNA segments into effective viruses and subsequent transfer to other cells is widely known. Besides, 
entire virus genomes can be incorporated into germ cells and transmitted from generation to 
generation as “vertical Inheritance” [Anderson, 1970]; [Nakahara and Sagawa, 1989]. The natural 
mechanism of “vertical inheritance” among genomes was successfully simulated by Kubota et al., 
[Kubota, Fukuda and Shimojima, 1996] through “reverse transcription” operator. The proposed 
algorithm’s special features and operators involve functions presenting host and virus populations, 
reverse transcription and transduction operators. The rest of the functions (selection, crossover and 
mutation) operate as in conventional GAs - EAs.  

As a standard procedure of GAs-EAs, initialization process involves the random generation of 
host population. As a parameter representation scheme, binary encoding was selected. Virus 
individuals are formulated as substrings of host individuals through transduction operation. In the 
original VEGA transduction operator randomly selects the hosts from which substrings to formulate 
viruses will be cut; whilst in the proposed algorithm the initial virus population is created partially 
from some of the best host individuals and partially randomly. To increase effective schemata through 
the virus evolution process, reverse transcription operator is 
applied to produce new substrings for viruses. Reverse 
transcription overwrites a virus’ string on a host’s string. As a 
result a new host, (infected host), is generated (see Figure 
2a). Transduction operator generates a new virus from a host 
string by taking out (cutting) a sub-string from the string of a 
host individual in order to generate new viruses (virus 
individuals) as Figure 2b illustrates. 

Unlike the conventional Virus Evolutionary Genetic 
Algorithm, the virus population size for the proposed algorithm is 1/10 of the host population. This is 
done so as to simultaneously maintain low computational time whilst achieving high exploitation-
exploration rates. Even though the size of a host chromosome is constant, the size of the virus 
individual grows larger as evolution occurs during the iterations. That is; each of the virus individuals 
has a variable string growing every few generations.  

During virus infection, an elitist scheme which acts as a replacement mechanism; is maintained. 
This particular scheme removes low fitted individuals from the population by replacing them with 
those having better fitness values. Fitness is specified according to the problem's nature. Should the 
optimization problem is about maximization; the replacement mechanism removes the individual with 
the least fitness value; otherwise the individual with the highest fitness value is removed. If none of 
the infected hosts has a positive fitness then the original host is preserved. Figure 3 illustrates the 
work-flow of virus infection with elitism. 

 
Figure 2. Virus operators: (a) Reverse 

transcription; (b) Transduction 
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 A virus individual (virus “i”) has a fitness value 
(fitvirus (i)) which is calculated for its effectiveness. 
The fitness of each virus is determined as the sum of 
the fitness of each infection caused by the current 
virus to the host population. 

( ) ( , )
j S

fitvirus i fitvirus i j
∈

=∑         (1) 

 The fitness of each infection is the difference 
between the fitness value of the original host (before 
its infection) and the infected one. This is 
mathematically described as follows: 

( , ) ( ') ( )fitvirus i j fithost j fithost j= −    (2) 
 According to equations 1 and 2, each virus has a 
measuring parameter for its infection strength; that is 
fitvirus (i). It is also assumed that fithost (j) and 
fithost (j’) are fitness values of a host “j” before and 
after its infection, respectively. The indicator fitvirus 
(i,j) denotes the difference between the fitness values 
fithost (j) and fithost (j’) which is equal to the 
improvement value obtained through the infection of a 
host individual. To the equations presented above, “i” 
denotes the virus number and “S” symbolizes the set 
of the host individuals infected by the virus “i”. 

 Infection rate (infrate (i)) controls the number of infections caused by each virus. If a virus has 
a positive fitness, the infection rate is increased according to a constant “α”. In contrast, if the virus 
has a negative value the infection rate is decreased. [Kubota, Fukuda and Shimojima, 1996] suggested 
that maximum infection rate to be 0.1 and initial infection rate to be 0.05. The infection rate of each 
virus should satisfy 0≤ infrate (i)≤1.0 in order to perform a reverse transcription operation to a given 
host population. Infection rate operates differently on a given search space, regarding the searching 
ratio. That is, if inf rate is high then local search through virus operators is performed, whereas 
global search through traditional genetic operators is achieved should virus infection rate is low. Note 
that virus infection plays the simultaneous role of crossover and mutation. Equation 3 represents the 
formulation of these settings for the determination of infection rate by Kubota et al., and is depicted 
below: 
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 It is obvious that, the higher the infection strength of a virus “i” (fitvirus (i)) is, the higher its 
infection capability (thus the infection rate) will be. Apart from the aforementioned parameters and 
indicators, a virus has also an indicator that indicates its performance duration, or its life. Actually, 
the virus life indicator shows the positive contribution of a virus to the host population. Equation 4 
shows this indicator: 

, 1 ,i t i t ilife r life fitvirus+ = × +               (4) 

where, “r” is the life reduction rate, “t” is the generation. If life is negative then the virus individual 
transduces a new substring from a random host. If life is positive the virus individual transduces a 
partially new substring from one of the infected host individuals for evolving for itself. Hence, both 
populations (hosts and viruses) co-evolve through the implementation of genetic operators and virus 
infection operators. This particular indicator of a virus life may be initialized as: infrate i,0 = init 
infrate while, lifei,0 =0. 

Traditional operators found in GAs-EAs (selection, crossover and mutation) are still applied; 
should infection operators fail to produce effective chromosome schemata. For this GA, stochastic 
sampling with partial replacement (roulette wheel selection), one-point crossover and classic 
mutation (one-point changing per individual) with 0.05 probability were programmed. Due to the 
stochastic nature of the mVEGA its termination is achieved after a predetermined number of 
generations, or when no further improvement is reached. 
ROUGH MACHINING OPTIMIZATION WITH mVEGA AND CAM SOFTWARE 

Rough-machining operations are applied in order to remove most of the original block material 
yielding a much more convenient shape for the finish machining operations that follow. In rough 
machining, the difference between stock and final part volume has to be divided into Z-heights to be 
sequentially machined. Remained volume is critical objective for optimization owing to its outcome on 

 
Figure 3. Work-flow of virus infection  

with elitism 
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later machining stages. The lower the difference between rough machined and ideal part is, the finer 
surface finish is achieved.  

A rough machining modelling was prepared for a sculptured part representing a hip joint used in 
orthopaedics as artificial implants. The advanced machining workbench of Dassault Systemes CATIA® 
V5 R18 was the machining modelling environment. A sweeping machining strategy for roughing was 
specified in order to take advantage of producing more uniform Z heights as intermediate tool 
trajectories are applied to models, thus; getting closer to final geometry.  

Optimization parameters were cutting speed – Vc (m/min) through its relation to spindle – n 
(rpm), feed rate – f(mm/min), stepover (radial tool engagement) – ae (%Ø, mm), stepdown (axial 
cutting depth) – ap (mm), and tool path style (choosing among three different tool paths). Cooperation 
among CAM software and mVEGA optimization algorithm was achieved by programming in Visual Basic 
for Applications (VBA) though an “in-house” software application program interface (API) 
development. CAM software played the role of “evaluator” (extraction of remaining volume) whilst 
mVEGA produced optimal values for machining parameters (phenotypic values). Thereby, loops of 
operations among these two systems were performed until reaching global minimum for the quality 
objective of remaining volume. To test performance and virus infection contribution to machining 
optimization, virus operators were isolated hence; resulting to a conventional GA. The results 
obtained by the two algorithms (GA and mVEGA) for their loops of evaluations indicated that mVEGA 
achieved faster convergence to global optimum than the traditional GA; thus revealing the important 
contribution of virus infection mechanism to optimization. 
RESULTS AND DISCUSSION 

A number of CAM software evaluations was executed to conduct the machining simulations and 
obtain data for remaining volume. Remaining volume was calculated by subtracting the ideal model’s 
volume from the machined model’s volume. As 50 generations were programmed for mVEGA, 50 
evaluations were to be conducted. Prior to the final evaluations a number of machining experiments 
were carried out to several sculptured models so as to check optimization efficiency, premature 
convergence avoidance and computational speed.  

Table 1. Optimal settings for machining parameters and intelligent operators for mVEGA and GA 
Optimum machining program 1 

Phase Optimal settings for machining parameters Quality 
objective 

Machining 
time 

Roughing Machining 
strategy 

Tool Ø 
(mm) 

ap 
(%Ø) 

ae 
(mm-%Ø) 

f 
(mm/min) 

n 
(rpm) RV (mm3) trm 

(min) 
 Z-Offset 10 29.85% 37% 600 4516 64483.14 76.35 

Optimization 
Algorithm Settings for genetic and virus infection operators Convergence 

time for mVEGA 

encoding 
type 

selection 
scheme 

crossover 
probability 

(pc) 

mutation 
probability 

(pm) 

infection 
rate generations tconvergence 

(hours) mVEGA 

binary SSPR 1 0.001 0.1 50 5.14 
Optimum machining program 2 

Phase Optimal settings for machining parameters Quality 
objective 

Machining 
time 

Roughing Machining 
strategy 

Tool Ø 
(mm) 

ap 
(%Ø) 

ae 
(mm-%Ø) 

f 
(mm/min) 

n 
(rpm) RV (mm3) trm 

(min) 
 Z-Offset 10 31.12% 32.45% 628.13 4483 64501.28 77.12 

Optimization 
Algorithm Settings for genetic operators Convergence 

time for GA 

encoding 
type 

selection 
scheme 

crossover 
probability 

(pc) 

mutation 
probability 

(pm) 
 generations tconvergence 

(hours) GA 

binary SSPR 1 0.001  50 6.27 
 

In all experiments mVEGA shown great 
operability without trapping to local minima. mVEGA 
algorithm tended to maintain vertical convergences 
during the evolution process; indicating its high 
exploration rate. Figure 4 illustrates the evolution 
diagram among the results obtained for mVEGA and 
GA. The former algorithm found optimal solution to 
the 35th iteration whilst the latter found the same 
result for the optimum at 47th iteration. 

Based on the phenotypes the two optimization 
algorithms generated for each of the optimal values 
for parameters, two machining programs for roughing 
were formulated using CAM software and suitable 
post-processor. Table 1 presents the parameter settings for both optimization algorithms and 
machining programs and Figure 5 depicts the rough machining simulation using the optimal settings 
for the parameters involved to optimization (with mVEGA). 

 
Figure 4. Comparative evolution diagram for 

resulting outputs among GA and mVEGA 
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CONCLUSIONS 
A modified Virus Evolutionary Genetic Algorithm for 

sculptured surface machining optimization using CAM 
software was presented in this paper. Optimization effort 
was referred to rough machining where the least amount 
of remaining volume need to be existed on an ideal model's 
surface to ease further machining processes. Typical 
process parameters available in a typical commercial CAM 
system were handled by the optimization algorithm, whilst 
measurements to extract remaining volume for simulations 
performed through API automation.  

The proposed algorithm was developed as a host 
application existed in CAM software and applied on a 
sculptured part for rough machining optimization. Results 
obtained indicated that intelligent systems based on other 
evolution theories than Darwin's not only may efficiently 
be applied to manufacturing optimization but also may 
perform better when compared to other systems. In 
particular, the proposed algorithm proved capable of 
rapidly converging to global optimum in terms of the 
quality objective studied. It was observed that virus 
operators promote only effective schemata with the 
ability to perform both local and global search without 
trapping to local optima.  

As a future perspective finish machining operations 
will be investigated and optimized through proper problem 
definition in terms of process parameters and quality 
objectives. In addition the proposed algorithm will be 
subjected to multi-objective optimization using Pareto 
optimality. 
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Figure 5. Machining simulation performed 

in CAM software using optimum 
parameter settings obtained by mVEGA: 

(a) Machining set-up, (b) tool path 
simulation and (c) roughed model 


