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ABSTRACT: Creep stresses have been obtained for a thin rotating disc having variable thickness and 
variable density with edge load. Results obtained have been discussed and depicted graphically. It has 
been seen that a rotating disc whose density and thickness decreases radially with edge load is much 
safer for a design in comparison to a flat rotating disc having variable density. The deformation is 
much more significant for rotating disk with edge load than those of a rotating disc without edge 
load. 
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INTRODUCTION 

Rotating disc play an important role in machine design. As a matter of fact the stresses in discs 
depend on the angular velocity with which they rotate. The problem of rotating discs was first treated 
in the early nineteenth century. Solutions of the isotropic discs including variable thickness, variable 
density and other cases can be found in most of standard creep textbooks [1, 4, 7]. Creep of thick-
walled homogeneous and non -homogeneous cylinders under internal pressure has been analyzed. 
Transition theory of creep has been given by Seth in 1972 in which he has defined the measure 
concept in mechanics [6] and creep transition [7]. You et al. [14] has calculated elastic-plastic stresses 
for a disk with variable thickness and density. Singh et al. [13] calculated creep stresses and strains 
for thick walled cylinders under internal pressure and temperature. A rigid inclusion case using 
transition theory has been taken by Gupta et al. [3] in 2007. A large number of research problems [2, 
8-12] had been solved using transition theory. 

Therefore, rotating discs were considered to be one of the exhausted subjects in the field of 
solid mechanics. There are many applications of rotating discs such as in turbines, rotors, and 
computer disk drives. With all these applications and interest, there has been much research in this 
field. The analytical procedures presently available are restricted to problems with the simplest 
configurations, possessing constant material properties and thickness. 

In this paper, we investigated the influence of density on the creep stresses in a rotating thin 
disc with variable thickness and edge loading by using Seth’s transition theory [7]. The thickness h and 
density of the disc ρ  are assumed to vary along the radius in the form  
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where h0  and ρ 0  are thickness and density at r b=  respectively, k  and m  are thickness and density 
parameters respectively. Results obtained have been discussed numerically and depicted graphically. 
GOVERNING EQUATIONS 
Consider a thin circular disc of variable thickness and variable density having internal radius a  and 
external radius b  respectively.  The disc is rotating with angular velocity ω  of gradually increasing 
magnitude about an axes perpendicular to its plane and passing through the centre.  The disc is thin 

so that it is effectively in a state of plane stress ( )Tzz = 0  and the variation of the thickness is radial 
and symmetric with respect to the mid plane. In cylindrical polar co-ordinates the displacements are 
given by [9], 

u r v and w d z= − = =  ( );1 0β         (2) 

where β  is a function of r x y= +2 2 and d is a constant. 
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The finite components of strain are [7],  
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The generalized components of strain are [6], 
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where n  is the measure and ′ =β βd
dr

. 

Stress-strain relations for this problem are 
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Substituting equations (4) in equations (5), the non-zero stress components are, 
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where  Pr ββ =′   and 
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Equations of equilibrium are all satisfied except 
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Using equation (6) in equation (7), we get a non-linear differential equation in β   as  
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The transitional points of β  in equation (8) are P→ −1  and P→ ± ∝ . 
The boundary conditions are  

Trr = 0 at  r a=    and   T Trr = 0    at  r b=    (9) 
SOLUTION THROUGH THE PRINCIPAL STRESS DIFFERENCE 

It has been shown [7, 9] that the asymptotic solution through the principal stress difference at 
the transition point P→ −1  leads to the creep state. We define the transition function R  as, 
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Taking the logarithmic differentiation of equation (10) w.r.t. ‘r’, we get 
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Substituting the value of 
dP
dβ

 from equation (8) in equation (11), we get 
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Asymptotic value of equation (12) as P→ −1  is  
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where asymptotic value of β  as P→ −1  is D r/ , D  being a constant. 
Integrating equation (13) with respect to ‘ r ’, we get 

   fhrAR g exp ν=      (14) 
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From equation (10) and (14), we have 
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ν exp           (15) 
Substituting equation (15) in (7) and integrating, we get 

   hT B A Fdr r h drrr = − −∫ ∫ω ρ2        (16) 

where B  is a constant of integration and F r h fg= − +1 1ν exp . 
Using boundary conditions (9) in equation (16), we get 
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From equations (17) and (15), we have 
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Equations (17)-(18) give creep stresses for a thin rotating disc having variable thickness and 
variable density. 

Now we introduce the following non-dimensional quantities 
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Using equations (1) in equations (17) - (18), we get the stresses in non-dimensional form as 
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For 2 0− − =k m , equations (19) - (20) becomes  
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For a disc made of incompressible material C → 0  ( )ν → 05.  , stresses (19) - (20) becomes 
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For 2 0− − =k m , stresses given by equations (21) - (22) becomes 
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DISC HAVING CONSTANT THICKNESS (K=0) AND VARIABLE DENSITY WITH EDGE LOADING 
For a flat disc rotating with angular speed Ω 2  having variable density with edge loading, 

stresses given by equations (23) and (24) becomes  
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For 2 0− =m , stresses given by equations (25) - (26) become  
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Results obtained are same as that of Gupta et.al. [4]. 
NUMERICAL ILLUSTRATION AND DISCUSSION 

Curves have been drawn in figures 1 – 6 between stresses and radii ratio brR =  for a disc 

rotating with   angular speed Ω 2  = 1,5 having variable thickness ( k  = 0,1), variable density (m  = -

1,0,1) and n = 1
7

1
5

1
3

, ,  ( )i e N. . , ,= 3 5 7  with edge load  E E
T1

0

= = 0.02, 1, 50. 
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Figure 1: Creep stresses in a Thin Rotating Disc 
Having Variable Density (m = -1) and constant 
thickness (k = 0) for various radii ratios. 

Figure 2: Creep stresses in a Thin Rotating Disc 
Having Variable Density (m = -1) and variable 
thickness (k = 1) for various radii ratios. 

 
For edge load E1 1< , it is seen that for a flat disc ( k = 0 ) whose density decreases radially 

(m = 1) and rotating with angular speed Ω 2 = 5, the circumferential stress is maximum at the 

internal surface for n = 1
7

1
5

1
3

, ,  respectively. For m = -1, 0, 1 ; k  = 1 and n = 1
7

, though the 

circumferential stress is maximum at the internal surface yet it has smaller values than those for m  = 
1 and k  = 0. This means that a flat disc with edge load ( E1 1< ) rotating with higher angular speed 
and whose density decreases radially increases the possibility of a fracture at the bore whereas a 
rotating disc having constant density (m  = 0) or density increases radially  (m  = -1) and thickness 
decreases radially ( k  > 0) recedes the possibility of the fracture at the bore. 
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Figure 3: Creep stresses in a Thin Rotating Disc 
Having Constant Density (m = 0) and Constant 

thickness (k = 0) for various radii ratios. 

Figure 4: Creep stresses in a Thin Rotating Disc 
Having Constant Density (m = 0) and variable 

thickness (k = 1) for various radii ratios 
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Figure 5: Creep stresses in a Thin Rotating Disc Having Variable Density (m = 1) and constant thickness 

(k = 0) for various radii ratios 
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Figure 6: Creep stresses in a Thin Rotating Disc Having Variable Density (m = 1) and variable thickness 

(k = 1) for various radii ratios 
For edge load E1 1> , variable density (m  = -1, 0, 1), variable thickness ( k  = 1) and 

n = 1
7

1
5

1
3

, , ; it is seen that the circumferential stress is maximum at the internal surface of a disc 

rotating with higher angular speed. For m  = -1, 0 and k  = 1 though the circumferential stress is 
maximum at the internal surface yet it has smaller values than those for m  = 1 and k  = 1. 

Therefore, it can be concluded that a rotating disc whose density   and   thickness   decreases   

radially   with   edge   load  E1 1>  and n = 1
7

 (or N = 7) is much safer for design in comparison to a 

flat rotating having variable density.  
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