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ABSTRACT: The ALTERNAT model described in this paper is a double hardening model for the 
mechanical behaviour of sand under alternating loading. For determination of the parameters of the 
ALTERNAT model, special types of triaxial tests are required, e.g., drained triaxial tests with 
monotonically increasing or decreasing axial strain and constant isotropic stress.  These tests are not 
easy to be conducted in soil mechanics laboratories.  It is intended here to choose a simple theoretical 
model to get the required stress - strain relationships for the determination of ALTERNAT model 
parameters. Of many theoretical models available to predict the overall response of sands, the 
endochronic model is chosen for this task. This model treats the sand as non-linear elastic-plastic 
material.  Furthermore, the theory assumes inelastic changes to be caused only by the rearrangement 
of grains. The stress path required in the tests is applied in the computer program (ENDOCH) written 
by the authors. The parameters are calculated for two samples for which Ng and Dobry (1994) made 
experimental investigation. It is concluded that the proposed procedure for the determination of the 
ALTERNAT model parameters is successful. The stress-strain relations predicted are similar to those 
obtained by Molenkamp based on laboratory test results. 
KEYWORDS: ALTERNAT model, endochronic, parameters, cyclic, sand 
 
INTRODUCTION - The ALTERNAT Model 

The model described in this paper forms the major component of a double hardening model for 
the mechanical behaviour of sand under alternating loading. 

The model was developed by Molenkamp (1987) at Delft Geotechnics.  In Figure (1), the yield 
surfaces of both plastic models, namely the “compressive” model and the “deviatoric” model are 
shown in the stress space of the isotropic stress, s, and the deviatoric stress, t. 
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Figure 1 - The yield surfaces of the ALTERNAT model 

Kinematic Plastic Model and Kinematic Rule 
Using the elastic and plastic strains and the stress ∑ together with their rates, the constitutive 

models in the current state can be defined on the Cartesian co-rotational base vectors, γi. 
The elastic model will be of the form: 

   ∑ )( ijij function=Λ                                    (1) 

The irreversible Eulerian strain rates or increments, K ij

.
, are described by a plastic kinematic 

hardening model of the form: 
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in which: F (Tij , χ) = 0 : yield surface, G (Tij , χ1) = 0: 
plastic potential, H (Tij, ξkl, wmn, χ): hardening,                        
w: plastic deformation, ξij : tensor of anisotropy 
representing the effect of the anisotropic fabric,               
χ�: quantity describing  the  size  of  the  kinematic yield 
surface;  the so-called hardening parameter, and χ1  : idem 
for plastic potential. 

Figure (2) illustrates the above conditions. 
Stress Induced Anisotropy Described By the Kinematic 
Hardening 

For simplicity, the functional form of the kinematic 
hardening Hkin is chosen as follows: 

                 ),( χTKinKin IHH =         (4) 
in which:  IT = invariants of the pseudo stress Tij. 
        The kinematic hardening Hkin can be calculated from 
experimental data using the Equation: 
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        The curve of the shear stress level (t/s)c in 
drained triaxial compression at an isotropic pressure 
(s/Pa) = 1 (Pa is the atmospheric pressure) is related to 
the deviatoric strain (see Figure 3) by, (Molenkamp, 
1985): 
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in which:  t = shear stress, n = quantity larger than 1, 
and Y1, Y2 = two approximations of the shear stress 
level versus plastic deviatoric strain curve of drained 
triaxial compression at s = Pa. 

Equation (6) has the properties that: 
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The two curves Y1 and Y2 are defined as follows: 
            EP

1 EY χ=               (7) 
and 
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in which: E, EP = two parameters of the pre-peak fit by a power law. (t/s)cv = shear stress ratio in 
triaxial compression at the residual state, thus at very large strain χ. 
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β = decay parameter. 
        The parameters  E  and EP  of   Equation  (7)  can  be  determined  from  the measured  
hardening  curve  when  it is expressed in terms of ln (t/s)c versus ln (χp). A fit with a straight line to 
the low strain range of this plot reads: 

Σnew

Σn

Σ

ξ

ξnew

ξ n

 
Figure 2 - Definition of the kinematic 

hardening and the motion of the 
kinematic yield surfaces 
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Figure 3 - Approximation for the stress-strain 

curve in drained triaxial compression test, 
(after Molenkamp, 1985). 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 
 

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673  299 

             χln.lnln 1 EPEY +=                 (9) 
Next the parameters T and β can be determined from a plot of ln ( (t/s)c - (t/s)cv) versus χ.  A fit 

with a straight line to the large strain range reads: 
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For full description of the ALTERNAT model, refer to Molenkamp (1987) and Fattah (1999). 
The Endochronic Model - Rearrangement Measure 

The endochronic theory is a viscoplastic one but without introducing a yield surface. Therefore, 
all complexities and difficulties that develop in introducing a suitable yield criterion are avoided. 

The source of inelasticity in sand is the irreversible rearrangement of grain configurations 
associated with deviatoric strains.  Thus, it is convenient to characterize the accumulation of 
rearrangement by an appropriate variable, ξ, termed the rearrangement measure, which will be used 
as the independent variable in the stress - strain law. 

Assuming that the development of inelastic strains is gradual, dξ must be a continuous and 
smooth function of dεij.  It can be shown that the only expression satisfying the above conditions is 
(Bazant and Krizek, 1976): 

     ijij dededJd
2
1)(2 == εξ                              (11) 

in which, J2 (  ) is the second invariant of the deviator of the tensor in parentheses, [ ]ε ε
~

= ij  = the 

strain tensor. 
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in which εij.= the deviator of the tensor, δij  = Kronecker’s delta. 
Densification Due to Deviatoric Strains 

The densification of sand may be characterized by the volumetric strain, λ, whose sign is chosen 
to be negative when the volume decreases. If vertical accelerations are not large enough to cause any 
significant separation or jumping of particles (as in the case in many earthquakes), the densification is 
produced almost exclusively by interparticle slips that result in a rearrangement of grain 
configurations. 

Subject to this restriction, dλ must be proportional to dξ and the dependence of the 
densification increment per cycle of shear on the strain amplitude and the number of cycles may be 
expressed by (Bazant and Krizek, 1976): 

            
)(κ

κ
λ c

dd −=                               (13) 

           ξσεκ dCd ),(=                               (14) 
in which:  κ = the densification measure. 

The function c (κ) is the densification-hardening function that models the decrease in the 
densification increments per cycle with an increase in the number of cycles, N. 

Expressing c (κ) in a Taylor series and truncating it after the linear term yields: 
                     )1()( κακ += occ                   (15) 

in which α and co are constants for a given sand at a given relative density. 
The densification-softening function,

 
C( , )

~ ~
ε σ , may be regarded as a function of )(2 εJ   in 

addition to )(1 εI and )(3 εI   which are the first and third invariants of ε~  . 

Accordingly, one suitable choice for C( )~
ε  is a function of J2( )~

ε  , and this function was 

identified by Bazant and Krizek (1976) as follows: 

                      [ ] 2/)1(
2 )(4

2
1)( −= qJqc εε                               (16) 

in which q is a non-negative constant for a given sand. 
          Generally, the material parameters α and q depend on the relative density, Dr. Based on the 
data reported by Silver and Seed (1971) and other data, Cuellar et al. (1977) proposed the following 
relationships: 

Co = 1.0 
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    54.033.295.0 2 ++−= rr DDq                           (17) 

        2066.6133.33 2 −+−= rr DDα                        (18) 
in which, Dr is expressed as a number (not a percentage). 
Intrinsic Time 

Since the increments of irreversible (inelastic) strains are caused by interparticle slips, they 
must be proportional to increments of the rearrangement measure, ξ, and the proportionality 
coefficient may, in general, depend on the state of strain and stress. 

To express this fact, a new independent variable, η, may be expressed such that: 
        ξσεη dFd .),(=                (19) 

As in the case of densification, the increment of inelastic strain per cycle diminishes as the 
number of cycles increases.  To account for this effect, it is expedient to introduce a new independent 
variable, ς, termed intrinsic time, whose growth relative to η or ξ gradually diminishes.  This 
phenomenon may be described by the relation: 

        
)(η

ης
f
dd =                                     (20) 

in which f (η), which may be termed a strain-hardening function, is a continuously increasing positive 
function of η and is given by the relation: 

        r

r
d )1()( ηβη +=                       (21) 

in which β and r are constants. 
         The function F is a strain-softening function and f (η) is a strain-hardening function in the sense 
of causing a decrease or increase in the slope of the stress - strain curve. 
         However, within the range of strains commonly encountered in seismic loading, it appears that F 
may be equal to unity as an acceptable approximation, (Bazant and Krizek, 1976). 
Endochronic Stress-Strain Law for Sand 

Because of the limited range of ξ-values that are of practical interest, it had been shown by 
Bazant and Krizek (1976) that the deviatoric stress - strain relation may be approximated by: 
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in which: G  = shear modulus, eij , ep
ij = the elastic and inelastic deviatoric strains, Z1 = constant 

(analogous to the relaxation time in a Maxwell chain used in viscoelasticity). 
       The volumetric stress - strain relation may be written as: 

        λσε d
K

d +=
3
3

                           (23) 

in which:  K = the bulk modulus. 
       For a wide range of shear strains and confining pressures, Cuellar et al. (1977) found, using 

simple shear tests, the following values for the parameters: 
Z1 = 2.5 x 10-4,     β  = 2.0    and   r = 0.70 

Equations (22) and (23) are capable of describing experimental results quite well within a range 
of shear strain amplitude from about 0.0001 to 0.0005, but the agreement is not good for a boarder 
range of amplitudes, (Cuellar et al., 1977). 

To get better agreement, G should be assumed to depend on I1( )
~
σ  , the first invariant of σ~ , 

since that the elastic rigidity of the solid skeleton depends on the number and areas of interparticle 
contacts, which in turn depends on I1( )~

σ . 

Since the contact areas between grains increase with the confining stress, the solid skeleton 
becomes stiffer and grain contacts slip as the confining stress is increased.  Based on extensive 
experimental data for the dynamic shear modulus, G had been shown to be essentially proportional to 
the square root of the confining stress.  Accordingly, Bazant and Krizek (1976) proposed the following 
expression for the shear modulus, G: 

        '
vMG σ=                                 (24) 
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in which:  σv
’ = vertical effective stress, M = constant  that is equal to 0.01 kN/m2 based on the simple 

shear tests conducted by Cuellar et al. (1977).  
It was found by Cuellar et al. (1977) that Equation (24) did not suffice to adequately describe 

the data for large strain amplitudes; generally the unloading portions of these hysteresis loops were 
too steep. 

It is recommended here to use a new procedure based on the procedure adopted by Huang and 
Chen (1990) for the cap plasticity model in which the elastic bulk modulus, K, can be derived from the 
confined compression test as follows: 
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where: Cr  = the swelling index, P  = effective hydrostatic stress, εe
v = elastic volumetric strain.      

        The elastic shear modulus, G, can be determined if Poisson’s ratio, ν, is evaluated: 
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)21(3
ν
ν

+
−

=
KG            (27) 

DETERMINATION OF THE ALTERNAT MODEL PARAMETERS 
The double hardening kinematic model ALTERNAT consists of three different model components, 

namely: 
(1) Non-linear elastic model. 
(2) Plastic compressive model. 
(3) Plastic deviatoric kinematic model. 

It was shown by Molenkamp (1980) that the parameters A, AP, B and BP of the elastic model can 
be determined most easily from a drained isotropic loading-unloading test.  The parameter V can be 
determined from the behaviour during initial deviatoric unloading. 

If it could be assumed that the material is isotropic initially, then from one drained triaxial test 
at constant isotropic stress s = Pa and monotonically increasing axial deformation (see Figure 4a and 
b) the following parameters can be determined.  This must be done after the elastic strains and the 
plastic compressive strains have been subtracted from the stress - strain curves. 

E and EP parameters can be determined from the fit by a power law to the first part of the 
curve in Figure (4a).  The parameters χt, (t/s)cv, T and  β are determined from the fit by an 
exponential function to the last part of the same curve (see Figure 4a). 
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Figure 4 - Determination of the ALTERNAT model parameters from drained triaxial test at 

constant isotropic stress. 
In the case of only one test and no other published experimental data on similar materials, only 

one dilatancy angle φo can be derived from the curve of the isotropic strain versus deviatoric strain 
(see Figure 4b). Then it must be assumed that FIMU (φμ) = FICV (φcv) = φo. In such a case, the parameter 
SCV (Scv) is not relevant and can be put at Scv = 1.  

From this curve (Figure 4b) also the parameter CHICV (χcv) can be determined if the deformation 
remains uniform until large deformation. 
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For a proper determination of the parameters φμ, φcv, Scv, LB and COH (c), at least two drained 
triaxial compression tests at different constant isotropic stresses would be needed.  From each 
individual test, a dilatancy angle φo can be calculated. Next the parameters φμ, φcv and Scv can be 
fitted using the values of φo. 

The determination of the parameters E, EP, EE and EEP is most simple in case of initial isotropy 
of the sample. The parameters E and EP are determined from the data of a triaxial compression test 

at constant isotropic stress following directly 
Equation (7).   

The parameters EE and EEP can be 
determined from a drained triaxial extension test 
at constant isotropic effective stress as shown in 
Figure (5).  To this end, to the measured shear 
stress level (t/s)e in triaxial extension there 
exists an equivalent shear stress level (t/s)c in 
triaxial compression with the same measure of 
shear stress level fd for triaxial compression and: 
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for triaxial extension. 
         Then the initial part of the resulting stress 
- strain curve can be fitted as (see Figure 5): 
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For the determination of tensile strength PTENS in isotropic loading, either a hydraulic 
fracturing test or tensile test must be performed. 
        For the determination of viscosity VC at liquefaction, strain controlled liquefaction tests at 
different rates must be performed. 
Summary of Required Tests 

For easy determination of all parameters of an initially isotropic material, the following tests 
would be needed: 
1. 1 drained isotropic loading-unloading test. 
2. 1 (or more) drained triaxial compression test(s) with monotonically increasing axial strain at 

different constant isotropic stresses. 
3. 1 (or more) drained triaxial extension test(s) with monotonically decreasing axial strain at 

different constant isotropic stresses. 
4. 1 (or more) drained triaxial test(s) with different cyclic deviatoric stress t and constant isotropic 

stress s. 
5. 1 hydraulic fracture test. 
6. 1 (or more) strain controlled undrained triaxial compression test(s) leading to liquefaction. 
7. In sintu Ko test or strain controlled triaxial compression with zero lateral strain on undisturbed 

sample. 
Stress Path 

Molenkamp (1987) described a procedure for the determination of most of the model 
parameters from a drained triaxial test on apparently initially isotropic Eastern Scheldt sand with d50 
= 150 μm and initial porosity n = 0.40.  The stress path of the test involved: 
a. isotropic loading up to a 2 bar cell pressure. 
b. isotropic unloading back to 1 bar cell pressure. 
c. 3 cycles of deviatoric loading at a constant isotropic pressure of 1 bar. 
d. isotropic loading up to 4 bar and unloading to 1 bar. 
e. another cycle of deviatoric loading at a constant isotropic pressure of 1 bar. 
f. loading towards failure at constant isotropic stress. 
THE PROPOSED PROCEDURE FOR THE DETERMINATION OF ALTERNAT MODEL PARAMETERS 

The stress path described in the previous section will be applied in the computer program 
(ENDOCH) written by the authors with some equations of the ALTERNAT model.  The procedure will be 
illustrated through the following example. 

Ng and Dobry (1994) made experimental and theoretical investigation on granular specimens 
composed of uniform spheres. 

χ
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Figure 5 - Determination of the parameters E, EP, 

EE and EEP from triaxial compression and 
extension tests 
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The discrete element method (DEM) was used in simulating round uniform quartz sand under 
monotonic drained loading with constant mean stress and cyclic constant volume loading (undrained). 

A typical 2-dimensional 
specimen used by Ng and Dobry (1994) 
is shown in Figure (6). The porosity 
was calculated as the ratio between 
the pore area of the plane where the 
spheres’ centers lie and the box 
dimensions.  In general 3-dimensional 
specimens, the porosity was defined 
as n = 1 - ∑ volume of spheres / 
volume of box. 

Two simulated granular 
specimens composed of spheres were 
used in this study (specimens B and 
C).  All particles were assigned the 
properties of quartz: shear modulus, G = 28.957 MPa, Poisson’s ratio, ν = 0.15, and the friction 
coefficient μs = tan φo = 0.5 where φo is the interparticle friction angle. 

The specimens are described in Table (1) in which the third and fourth columns show the total 
number of spherical particles N used in each specimen, as well as the ratios R1/R2/R3  of three 
different particle sizes with N1/N2/N3 which are the numbers of particles having these sizes. 

Table 1 - Characteristics of specimens used in simulation, (from Ng and Dobry, 1994). 
 Number and Sizes of Spheres in Specimens Specimen after Consolidation 

Specimen μs 
Total Number of 

Particles 
(N1/N2/N3) and 

(R1/R2/R3) 
σc 

(kPa) 
Porosity 

(n) 
Relative Density 

(%) 

B 
 
C 

0.5 
 

0.5 

398 
 

398 

291/79/28 
(1/1.5/2) 
291/79/28 
(1/1.5/2) 

137 
 

137 

0.349 
 

0.382 

68.8 
 

52.0 
 

In all cases, N = N1 + N2 + N3 and all the specimens 
were isotropically consolidated to σc = 137 kPa prior to 
monotonic and cyclic loading. 

In the following steps, the ALTERNAT model 
parameters will be calculated for specimen B. In Figure 
(7), the cell pressure (σc) is shown against the number 
of data points (each point concerns with a loading 
increment). It should be noticed that the afore 
mentioned stress path consists of many increments of 
load, each followed by an unloading and reloading 
increment. 

In Figure (8), the effective stress path is shown in 
terms of: 

        
3
1)2( ras σσ +=                       (30) 

        
3
2)( rat σσ −=                         (31) 

where:  σa = axial stress, σr = radial stress.    
Zero-Dilatancy Rule 

Dilatancy is independent of the increment of 
stress or its direction for a fixed stress point, and can 
be approximated by a linear function of stress ratio, (Zienkiewicz et al., 1987): 

 
Figure 6 - Geometry of 2-dimensional specimen used by Ng 

and Dobry (1994) 
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Figure 7 – The cell pressure against number of 

increments for the stress path followed by 
numerical simulation 
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Figure 8 – The effective stress path followed 

by the numerical simulation 
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where:  η = t/s  and αg is constant. 
         This simple rule predicts zero dilatancy whenever the line: 

                 gM=η                                           (33) 

is reached. 
          Generalization to three-dimensional stress conditions can be done if a law of a Mohr-Coulomb 
type is assumed (Zienkiewicz and Pande, 1977) for the zero dilatancy line, giving (Zienkiewicz et al., 
1987): 

                  )3sinsin3(/sin6 θφφ cvcvgM −=                          (34) 

where θ is Lode’s angle defined by Molenkamp (1987) as: 

         66
,633sin 3

3 πθπθ ≤≤
−

=
t

J
Tij                        (35) 

where: φcv = a constant residual angle of friction,J3= the third invariant of the deviatoric pseudo stress 
tensor. 

In Figure (8), the zero-dilatancy lines were drawn depending on the equation of Zienkiewicz et 
al. (1987), i.e., Equation (34).  The numbers in this figure indicate the sequence of loading. 
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Figure 10 – The shear stress level against shear 

strain for the numerical simulation 
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Figure 11 – The strain path in terms of shear 

strain and spherical strain 
Figure 12 – Calculation of elastic parameters A 

and AP through logarithmic correlations 
         In Figure (9), the stress - strain path of the isotropic components are shown in terms of s and 
the spherical (volumetric) strain: 

        ⎟⎟
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in which:  Vo = the initial volume of the sample. 
In Figure (10), the shear stress level (t/s) is shown against the shear strain γ: 
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in which:  ho = initial height of the sample = 76 mm. 
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In Figure (11), the strain path is shown in terms of the shear strain γ and the spherical strain V.  
It should be noticed that mainly due to cyclic loading, a permanent volumetric strain and a shear 
strain are generated. The ratio of the rate of change of the volumetric strain and the shear strain, 

γ&& /V , in consecutive cycles is quite similar. 
The parameters A and AP can be calculated from an isotropic loading test.  In Figure (12), the 

relevant data are put in the form of the logarithms of V and (s/Pa), which should be linear.  This 
relation is approximated by: 

        
AP

Pa
sAV ⎟
⎠
⎞

⎜
⎝
⎛=                        (38) 

The best fit of the relation gives: A = 0.00113 and AP = 0.327. 
         Knowing the parameters A and AP for a range of magnitudes of the parameter V, the stress - 
strain response was calculated.  Next from the calculated strains as given in Figures (9) and (11), the 
elastic strains, which were calculated using the calculated parameters, were subtracted. The 
remaining plastic components are shown in Figures (13), (14) and (15). 
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Figure 13 – Spherical stress against plastic 

component of strain 
Figure 14 –Shear stress level against plastic shear 

strain for the numerical simulation 
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Figure 15 – Plastic spherical strain against plastic 

shear strain 
Figure 16 – Calculation of elastic parameters B 

and BP through logarithm correlations 
         Then using the remaining stress - plastic strain path of the initial loading of Figure (13), the 
parameters B and BP were calculated. To this end, the initial loading path in Figure (13) is 
approximated by the expression: 

        
BP

Pa
sBV ⎟
⎠
⎞

⎜
⎝
⎛=                                     (39) 

In Figure (16), the relevant data are put in the form of the logarithms of V and (s/Pa) which 
should be linear.  The best fit of the relation gave the magnitudes of B and BP as follows: B = 0.00233 
and BP = 0.2189. 
        The experimental data of the shear stress level (t/s) and the deviatoric plastic strain γd (Figure 
14) can be used for the determination of: 
1- the load history parameters κ and nd. 
2- the parameters of the hardening E, EP, EE and EEP. 
3- the initial anisotropic condition in case the material is not isotropic initially. 
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        Due to the straight envelopes of the alternating strain path of Figure (15), κ could be chosen 
equal to 1, (Molenkamp, 1987). 
        In Figure (17), the resulting kinematic shear strain γd

kin from the stress reversal are shown as a 
function of the shear stress level (t/s). 
Cyclic Mobility 

It can be seen in Figure (17) that the average resulting kinematic deviatoric strain γd
kin of 

loading is slightly larger than the similar strain of unloading.  This difference can be contributed to 
the cyclic mobility. 

        unloadingloadingmob γγγ Δ−Δ=Δ           (40) 

It can also be noticed that the shapes of the curves of loading and unloading are different.  The 
curve for loading shows a continuously decreasing tangent stiffness immediately from the start, while 
for the unloading curve the tangent stiffness remains quite large during the first part of the unloading 
path and then starts to decrease much faster than the curve for loading.  This is also illustrated in 
Figure (18). 
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Figure 17 – Kinematic deviation plastic strain in cyclic 
loading from stress reversal against shear stress level 

Figure 18 – Cyclic mobility 
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Figure 19 – Linear approximation to logarithm 
shear stress level against kinematic deviatoric 

strain, loading 

Figure 20 – Linear approximation to logarithm 
shear stress level against kinematic deviatoric 

strain, unloading 
         At this stage still the hardening parameters for triaxial compression E and EP and for triaxial 
extension E and EEP.  The fit to the stress - strain curve for triaxial compression can be obtained by 
using for the shear stress level below peak the following expression: 

        { }EPd
ckin

c

E
s
t

,
* γ=⎟

⎠
⎞

⎜
⎝
⎛

                         (41) 

         In Figure (19), the best linear fit for shear stress levels between zero and peak of the logarithms 
of γd

kin,c and (t/c)c is shown.  The fit gave the following values: 
E* = 3.881   and   EP = 0.4648 

         It is assumed that the deviatoric strain rate, 
.
d
cγ , in a drained triaxial compression test is 

related to the deviatoric strain rate χ
.

 at the same stress level (t/s)c by, (Molenkamp, 1987):  
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        χγ &&
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,                    (42) 

in which:  LB = parameter of the order 0.1 up to 0.5. 
         From Equation (42) it follows, if LB = 0.3, that: 

19.4)3(881.3 4648.0*3.0
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The fit to the equivalent curve for triaxial extension is expressed by: 
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                          (43) 

          In Figure (20), the best linear fit for high shear stress levels to the logarithms of γd
kin,e and 

(t/s)c is shown.  The fit gives the following values: 
EE* = 1.649   and   EEP = 0.2365. 

From Equation (42), it follows, if LB = 0.3, that: 
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In Figure (21), the average equivalent curves for triaxial compression and extension are shown 
together. Figure (22) shows the relationship between volumetric and shear strains from which the 
parameter χcv = 1. 
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Figure 21 – Kinematic deviatoric strain in cyclic 

loading from stress reversal against shear stress level 
Figure (22) – Shear strain  against volumetric 

strain 
Table (2) - ALTERNAT model parameters for the specimens used by Ng and Dobry (1994) as determined 

by the proposed procedure. 
Value                              Parameter Specimen B Specimen C 

Non-linear Elastic Model: 
V  
A 
AP 

0.12 
0.00113 
0.327 

0.12 
0.00112 
0.348 

Deviatoric Plastic Model: 
Hardening for Triaxial 

compression: 
 

E 
EP 

CHIT (χt) 
TSINF (t/s)cv  

TT (T) 
BET (β) 

CHIM (χm) 
NM (nm) 

LB 
COH (c) 

4.19 
0.4648 
0.116 
0.655 

0 
0 

0.049 (Molenkamp, 1987) 
5.15  (Molenkamp, 1987) 

0.3 (published data) 
0 

4.17 
0.4633 
0.122 
0.643 

0 
0 

0.049 (Molenkamp, 1987) 
5.15 (Molenkamp, 1987) 

0.3 (published data) 
0 

Hardening for Triaxial 
Extension: 

EE  
EEP 

1.71 
0.2365 

1.69 
0.2314 

Hardening by 
Densification: 

POROS (ni) 
DENSE (nd) 

KAP (κ) 

0.349 
0.27 
1. 

0.382 
0.27 
1. 

Dilatancy: 
 

FIMU (φμ) 
FICV (φcv) 
SCV (Scv) 

CHICV (χcv) 

26.5o 
26.5o 

1. 
1. 

26.5o 
26.5o 

1. 
1. 

Tensile Strength: PTENS (σt) 
Viscosity in Liquefaction: VC (Vc) 

0. 
0.01 sec. 

0. 
0.01 sec. 

Initial State: 
 

CHII (χI) 
Ko 

0.05 
0.55 

0.05 
0.55 
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 The other parameters may be assumed on the basis of published experimental data of similar 
materials.   

The same procedure was followed for the determination of the parameters for specimen C.  The 
whole parameters are listed in Table (2). 
CONCLUSIONS 

For determination of the parameters of the ALTERNAT model, special types of triaxial tests are 
required, e.g., drained triaxial tests with monotonically increasing or decreasing axial strain and 
constant isotropic stress.  These tests are not easy to be conducted in soil mechanics laboratories.  It 
is intended here to choose a simple theoretical model to get the required stress - strain relationships 
for the determination of ALTERNAT model parameters. 

Of many theoretical models available to predict the overall response of sands, the endochronic 
model is chosen for this task.  

The stress path required in the tests is applied in the computer program (ENDOCH) written by 
the authors. The parameters are calculated for two samples for which Ng and Dobry (1994) made 
experimental investigation. 

It is concluded that the proposed procedure for the determination of the ALTERNAT model 
parameters is successful. The stress-strain relations predicted are similar to those obtained by 
Molenkamp based on laboratory test results. 
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