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ABSTRACT: In this paper, the steady laminar flow of two incompressible immiscible liquids under the 
action of a constant pressure gradient through a channel of circular cross - section, rotating with a 
uniform angular velocity about an axis perpendicular to the channel in saturated porous medium 
based on Brinkman's Model (1947) has been studied. It is assumed the two angular velocities about the 
axis of rotation and the porous parameters are small, to obtain the mathematical solution using 
perturbation technique. 
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INTRODUCTION 

Survey reveals that the velocity profile due to the flow of two incompressible immiscible liquids 
occupying equal heights between two parallel plates was first obtained by Bird, Stewart and Lightfoot 
(1960).This problem was further generalized by Kapur and Shukla (1964) to the case of flow of a 
number of incompressible immiscible liquids occupying different heights. The stability analysis of two 
superposed fluids between parallel planes was formulated by Yih (1967) and later extended by Nakaya 
and Hasegawa (1974) to include the effects of gravity and surface tension. Santowski, Seidal and Ames 
(1969) studied the stability analysis by considering the stratified gas over a liquid under the 
assumption of inviscid and incompressible flow. This assumption is only an approximation which is 
true only when the fluid velocities are low. Rudraiah (1975) modified this work by considering the 
superposed flow of a compressible fluid over an incompressible fluid but under the assumption that 
the compressibility of fluid is taken as an isothermal atmosphere where the density changes with 
height. 

Ramana Rao and Narayana (1981) Studied the flow of two incompressible immiscible liquids 
occupying equal heights between two parallel plates in a rotating system under the action of constant 
pressure gradient. They also studied the associated thermal distribution, assuming equal and different 
plate temperatures. By immiscible fluids, we mean, superposed fluids of different densities and 
viscosities. Ramana Rao and Narayana (1981) suggested that olive-oil and water can be taken as the 
two immiscible liquids. 

The uniqueness for two immiscible fluids in a one dimensional porous medium was studied by 
Baiocchi, Claudio, Evans, Lawrence C., Frank, Leonid, Friedman, Avner (1980). 
MATHEMATICAL FORMULATION 

The equations of motion in steady state flow for two incompressible immiscible viscous fluids in 
a saturated porous media based on Brinkmann’s model in rotating straight pipe are 
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1=i  corresponds to the upper liquid, 2=i  the lower liquid. 
The equation of continuity is  

0' =⋅∇′ iV
rr

       (3) 

In the above equations, '
iV
r

 are the velocities of the immiscible liquids, P′  the pressure, iρ  the 

density and iυ  the kinematic coefficient of viscosities of the two liquids, iK  the perembilities of the 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 326 

porous media each having the dimension of 2)length( , we choose the z′ - direction to be parallel to 

the axis of the channel and x′ -direction to be parallel to the axis of rotation. In this thesis, the cross 
section is taken to be circular. It is convenient to use the cylindrical polar system of coordinates 
( )zr ′′ ,,θ  where θ  is the angle between the radius and the axis of rotation and z′  is measured from 

the axis of pipe. Let ( )iii wvu ′′′ ,,  be the components of '
iV
r

 in the direction of ( )zr ′′ ,,θ . For fully 

developed laminar flow, those will be functions of r ′  and θ  only. 
The equations (1), (3) referred to this coordinate system become,  
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For fully developed laminar flow, the form of /π  is restricted to  
( )θπ ,c rFz ′+′−=′       (10) 

where ‘c’ is a constant and may be termed as the gradient of π ′  along the axis of the pipe. 
The above equations are the equations of motion of a viscous incompressible liquid 

characterised by viscosity 1υ  and density 1ρ  occupying the space between ∈=′ ar  and ar =′  in the 

circular pipe for the upper liquid. Here ( )111 ,, wvu ′′′  are the components of the velocity in the direction 

of ( )zr ′′ ,,θ  where ''θ  is the angle between the radius and the axis of rotation and z′  is measured 
from the axis of the pipe. 

For fully developed laminar flow these will be the functions of radial ( )r′  and azimathul ( )θ  

only for the lower liquid occupying the space between 0=′r  to ∈=′ ar  of the circular pipe, we have 
the lower liquid is as follows 
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where                                   ( )2222
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1 zrP ′+′Ω′−′=′ θρπ              (15) 

For the upper liquid, we introduce the stream function 1φ′  such that  

1 1,r u v
r

ϕ ϕ
θ
′ ′∂ ∂′ ′ ′= − =

′∂ ∂
        (16) 

where 1φ′  is a function of r ′  and θ  only. Eliminating π ′  from (4) and (5) and using (16), we get, 
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From equations (6) and (16) we get 
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 and ( )YX ,∂′  stands for the Jacobian of X and Y with respect to r ′  and θ  respectively.  
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For the lower liquid, following similar analysis, we get 
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we seek the solutions of the equations (17),(18),(21)and (22) subject to the boundary conditions for no 
slip at the walls i.e 

0=′=′=′ iii wvu    for  i=1and 2 
or 
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Further  we require that all the velocity componenets i,e 
r′∂
′∂ 1φ ,

r′∂
′∂ 2φ ,

θ
φ
∂
′∂ 1 ,

θ
φ
∂
′∂ 2  must be finite 

over the cross section. 
In the absence of rotation the problem reduces to the saturated porous flow  through a straight  

pipe under a pressure gradient. When the rotation is present , secondary flow is setup due to the 
interaction between the pressure gradient  and the coriolis forces. The two velocity components of 
the secondary flow in the plane of the cross section have been expressed in terms of the stream 
function φ′ . Thus the determination of the velocity requires only the determination of the stream 

function  φ′ and the component w′ (primary flow) of the velocity nomal to the plane of the cross 
section.A systematic method given below to determine an approximate solution for this flow. 

In terms of the non-dimensional variables (Dash denotes physical quantity whereas others such 
as 11,, φwr , etc. are non-dimensional quantities) 
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where c1 and c2 are the pressure gradient, R1 and R2 stands for the Reynolds number of the upper and 
lower liquids respectively. T1 and T2 are the Taylor numbers for these liquid respectively and S1 and S2 
are porous parameters.  

Using the above non-dimensional quantities (24), equations (17-22), we get. 
Upper liquid: 
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Lower liquid: 
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To find the solution for 2211 ,,, φφ ww  we use the following boundary conditions for no slip at 
walls given in non-dimensional form using (23) 
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To solve the equations of motion, we assume 
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where the subscripts 1 and 2 stand for upper ( )1≤∈≤ r  and lower liquids ( )≤∈≤ r0  for φ  and w and 
further for 1 1S � and 

2 1S � , we expand 
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The 2nd subscript stands for the order of the Taylor’s number where as the super script within 

the brackets accounts for the order of the porous parameter. 
Substituting equations (33) and (34) in equation (25), equation (35) and (36) in equation (27) and 

to the zeroth power in both T1 and T2, we get 
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RESULTS AND DISCUSSION 

In the Central plane perpendicular to the axis of rotation 
2
πθ =  or 

2
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, it can be seen from 

the equations (13),v′ = 0 in either case. So a particle of liquid once in this plane does not leave it in 
the subsequent motion. The motion in two halves of the pipe is therefore quite distinct from each 
other. 

The differential equation of the stream line in the central plane of the pipe is 
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To a sufficient approximation these stream lines for the lower liquid are given by  
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Table 1 gives the values of  ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
a
Tzz

48
' 2

'
0   from the above equation  taking L = 1.1 and S2 = 0.5. It 

shows the same stream line  in  the plane of symmetry for ∈=0.5,0.6,0.75,0.9 and ∈=1. We note that 
no stream line in the  central plane can ever reach the edge of the pipe. As the angular velocity Ω′  is 
increased , the distance which must be covered by the central stream line to be within a given 
distance from the edge gets smaller; this result holds good for all values of ∈ between 0.5 and 1. 

Table 1 : Values of stream lines for the lower liquid 

r 

↓  

∈ 
 

S2 

↓  

0.5 0.6 0.75 0.9 1 

0.1 0 
0.5 

3.391635 
3.034739 

1.6249175 
1.4597205 

0.6582208 
0.588324 

0.3115829 
0.27667175 

0.20067 
0.138658 

0.2 0 
0.5 

7.34312 
6.6032925 

3.415409 
3.205653 

1.352609 
1.2065365 

0.6328003 
0.5661673 

0.40546 
0.35981375 

0.3 0 
0.5 

13.00858 
11.819994 

5.640874 
4.7060745 

2.131843 
2.10858705 

0.9751172 
0.8781637 

0.61903 
0.554328 

0.4 0 
0.5 

25.24018 
23.4528235 

8.962895 
8.310087 

3.078641 
2.762295 

1.3547032 
1.2367872 

0.84729 
0.769416 

 

For a fixed value of T2 the effect of the porosity is to decrease the distance that the liquid 
particle in the central plane travel in going from points near ∈ to points ∈ = 1, also the effect the 
porosity is to decrease the same as ∈ moves from 0.5 to 1 at any r. 

The differential equation for any stream line is given by 

   
'
'

'
'

'
'

w
dz

v
dr

u
dr

==
θ

                                                    (49) 

From the first relation, we obtain for the curves of intersection of constant surface with a 
section z′= constant, the polar equation for the lower liquid  
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Table 2 shows the values of r and k of the above equation (2.65) and (2.66). For 2S 0,  0.5;=  

0.5,1∈=  together with the values of k, obtained by substitution of the values in the previous 

equation when 0=θ .It is concluded that, as porosity increases the point. 
Table 2:- values of r and k 

S2 ε r k 
0 0.5 0.224 0.00009 

0.5 0.5 0.225 0.00008 
0 1 0.447 0.29 

0.5 1 0.749 0.13 
 

Corresponding to degenerate stream lines moves away from the dividing surface ∈. As r 
increases the value of  k decreases also. However the plots of the polar equation for different values 
of k have not been attempted, in view of the plots being very close to each other, but the conclusion 
remain the same. To obtain the relation between θ  and 'z , we consider  from the equation (49) 

'
'

'
'

w
dz

v
dr

=
θ

 

For points r → ∈ and under sufficient approximation, we get for lower liquid 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ++

′
=

′−′−
24

tanlog)1()1(1
24

)( )1(
202

)0(
20)0(

21

2

1 θπ
φ

wSw

T
a
zz

 

( ) ( )

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈+∈−

−
∈

−+
+

∈+∈−
∈−∈

⎭
⎬
⎫

⎩
⎨
⎧ +−=′−′ 42

2

2

242

2

2
1 65

1
216

3

65
log18

24
tanlog24 Li

SL
T
azz θπ    (51) 

'1 zz =′  where 0=θ  Also ∈ → 1, L → 0, we recover the work of Ramana Rao (1970) for the non 
magnetic and non porous case. 

Table 3 gives the values of 1

2

( )
24
z z

a
T

′ ′−
⎛ ⎞−
⎜ ⎟
⎝ ⎠

 from equation (51) 

Table 3:- Values of stream lines (central plane)for the lower liquid 

θ ε = 0.5 
L = 1.1 

ε = 0.6 
L = 1.1 

ε = 0.75 
L = 1.1 

ε = 0.9 
L = 1.1 

ε = 1 
L = 1.1 

0° 0 0 0 0 0 
10° 0.004797815 0.007420925 0.01051724 0.01374082 0.1534998 
20° 0.00974682 0.01568470 0.0213659 0.02791257 0.3118312 
30° 0.01502335 0.0241763 0.0329325 0.04302661 0.480643 
40° 0.02086527 0.0335771 0.0457382 0.0597596 0.667546 
50° 0.0276419 0.04448275 0.0605934 0.07916795 0.8843478 
60° 0.0360184 0.05796269 0.07895544 0.103159 1.152338 
70° 0.0474630 0.07638005 0.10404318 0.1359373 1.518488 
80° 0.06663045 0.1072253 0.14606001 0.19083431 2.131715 

 
Table 3 shows the distance which must be covered before a liquid particle at θ = α increases and 

tends to infinite for all values of S2 as α tends to 
2
Π

. The effect of the porous parameters is to 
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displace the stream lines towards to the edge of the pipe. S2 = 0 (in the non-porous case) we recover 
the work of Patrudu (2003).  
CONCLUSIONS 

 The motion in two halves of the pipe are therefore quite distinct from each other. 
 No stream line in the  central plane can ever reach the edge of the pipe. As the angular velocity  

is increased , the distance which must be covered by the central stream line to be within a given 
distance from the edge gets smaller. 

 For a fixed value of T2 the effect of the porosity is to decrease the distance that the liquid 
particle in the central plane travel in going from points near ∈ to points ∈ = 1, also the effect the 
porosity is to decrease the same as ∈ moves from 0.5 to 1 at any r. 

 The effect of the porous parameters is to displace the stream lines towards to the edge of the 
pipe. 

Nomenclature 
1u′  Primary velocity of the upper liquid, 2u′  Primary velocity of the lower liquid, 1v′  Secondary 

velocity of the upper liquid, 2v′  Secondary velocity of the lower liquid, 1w′  Axial velocity of the upper 
liquid, 2w′  Axial velocity of the lower liquid, r′ Radius of the pipe, 2μ  Viscosity of the lower liquid, 
θ   Angle between the radius and the axis of rotation (azimathul), π ′  Pressure gradient, Ω′  Angular 
velocity, 1ρ′  Density of the upper liquid, 2ρ′  Density of the lower liquid, 1υ   Kinematic viscosity of 
the upper liquid,  2υ  Kinematic viscosity of the lower liquid, 1T  Taylor number of the upper liquid, 

2T  Taylor number of the lower liquid, 1R  Reynolds number of the upper liquid, 2R  Reynolds number 
of the lower liquid, 1w   Axial velocity for the upper liquid. 2w   Axial velocity for the lower liquid, 1φ   
Stream function for the upper liquid in non-dimensional form, 2φ   Stream function for the lower 
liquid in non-dimensional form, z′  Measured from the axis of the pipe, P′   Pressure, c   Constant and 
may be termed as the gradient of π ′  along the axis of the pipe, ∈  Non-dimensional parameter, 1μ  
Viscosity of the upper liquid, r Radius of the pipe in non-dimensional form, 1K ′  Permeability of 
porous medium of the upper liquid. 2K ′  Permeability of porous medium of the lower liquid.  
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