ANNALS of Faculty Engineering Hunedoara |"ssss. ;ssss®
‘s -

— International Journal of Engineering 4

gineering
Hunedoara

o
1
B - grac A
o Eliilllll_l_\
I

8| lysuiis

Tome XII [2014] - Fascicule 1 [February]
ISSN: 1584-2665 [print]; ISSN: 1584-2673 [online]

a free-access multidisciplinary publication
of the Faculty of Engineering Hunedoara

I Ljiljana VELJOVIC, 2 Dragan MILOSAVLJEVIC,
3. Gordana BOGDANOVIC, 4 Aleksandar RADAKOVIC

MODELING AND ANALYSIS FOR THE VIBRATION
OF A GYRO-ROTOR

13- Faculty of Engineering, University of Kragujevac, Kragujevac, SERBIA
4 State University of Novi Pazar, Novi Pazar, SERBIA

Abstract: Dynamic behaviors of a gyro-rotor are analyzed by a theoretical approach. A discrete dynamic
model for a gyro-rotor is established by considering the eccentricity, angle inclination and positions of
rotating axes. The dynamic model consists of the gyro-rotor which rotates around axes with or without
intersection. Using vector method, the nonlinear equations of motion are derived. The dynamic behaviors of
the gyro-rotor system are investigated with the time responses computed from the equations of
motionDynamic behaviors of a %yro—rotor are analyzed by a theoretical ap{n‘oach. A discrete dynamic model
for a gKro-rotor is established by considering the eccentricity, angle inclination and positions of rotating
axes. The dynamic model consists of the gyro-rotor which rotates around axes with or without intersection.
Using vector method, the nonlinear equations of motion are derived. The dynamic behaviors of the gyro-
rotor system are investigated with the time responses computed from the equations of motion.
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1. INTRODUCTION

A gyroscope is a body of rotation (for example, a massive disc) which is set spinning at a large
angular velocity around its axis of symmetry. First acquaintance with a gyroscope occurs usually
in early childhood, when the child watches the unusual behaviour of a widely known toy — a
spinning top. A toy gyroscope seems to be able to defy gravity. As long as the top is spinning fast
enough, it remains staying steadily (“sleeping”) on the lower sharp end of the axis avoiding
tipping over or falling down to the ground and preserving the vertical position of the axis in spite
of the high position of its centre of mass — the centre of gravity of a spinning top can be located far
above its supporting pivot. If the axis of a spinning gyroscope is inclined to the vertical, the axis
generates in space a vertical circular cone, so that the angle between the gyroscope axis and the
vertical remains constant during rotation.

The most important practical applications of gyroscopes are met in devices for measuring the
orientation or maintaining the stability of airplanes, spacecraft, and submarines — vehicles in
general. Various gyroscopes are used as sensors in inertial guidance systems.

The single track gyroscopic vehicle problem is first considered in 1905 by Louis Brennan [1]. Many
extensions were later developed, including the work by Shilovskii and several prototypes were
built. The differences in the various schemes lie in the number of gyroscopes employed, the
direction of the spin axles relative to the rail, and in the method used to produce the acceleration of
the spin axle. Other important application of gyroscopic stabilizers include to ships and ocean
vehicles and robotics [1].

In recent years, many advanced techniques have been made in modern control theory, and they
have been successfully applied to the study of control of a wide variety of engineering systems.
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| Then, control of tall buildings and towers, long bridges and other
flexible civil engineering structures has generated much interest.
Environmental loads on flexible civil structures, such as those
stemming from wind and earthquake can cause human discomfort,
motion sickness and sometimes endanger structural safety and
integrity. Passive and active control schemes are becoming an
integral part of the structural systems over the last two decades.
Passive devices, such as base isolation system, viscoelastic dampers

Figure 1. Model of gyro and tune‘d mass damper, are‘ .wid‘ely accepted by the er?gineer?ng
rotor with two component ~ community as a means for mitigating the effect of dynamic loading

rotation around on structures. However, these passive device methods are unable to
orthogonal axes without

 tersections adapt to structural changes and to varying usage patterns and

loading conditions.
In the last two decades, many other active control devices have been developed and conducted by
many researchers for civil engineering applications. One of active control devices used in
navigational, aeronautical and space engineering is gyroscope system. The gyroscope system is
commonly used for the attitude control of an unstructured object. The gyroscope system also can
be used for vibration control of structured objects like buildings, towers and bridges. this system is
more compact and hassmaller mass than other control devices with the same ability to control.
This paper is an attempt to develop some clarity regarding the old problem of precession and
especially nutation of gyroscopes
The scientific study of coupled oscillators started with Christian Huygens’ observations in the
seventeenth century of mutual synchronization of pendulum clocks connected by a beam [1]. More
recently, it has been recognized that mutual synchronization of coupled oscillators—the
adjustment of rhythms of oscillating systems due to their weak interactions—occurs in many
biological systems.
In this paper research results of influences the eccentricity, angle inclination and positions of
rotating axes at nonlinear dynamics qualitative properties are presented. Also, the properties of
nonlinear dynamics of a gyro-rotor are investigated by using the corresponding equations of
phase trajectories of corresponding basic scleronomic nonlinear model to the dynamic model
consists of the gyro-rotor which rotates around axes with or without intersection. By using Math-
Cad program for drawing families of phase portraits visualizationof nonlinear phenomena in
dynamic of gyro-rotor model are presented, also on that graphics it is barely noticeable a influence
of the eccentricity, angle inclination and positions of rotating axes.
2. THE MODEL OF THE GYRO-ROTOR SYSTEM AND BASIC EQUATIONS
Here is presented eccentric disc (eccentricity is e), with mass m and radius r which is inclined to
the axes of its own rotation by the angle (3. The angle of own rotation around moveable axis
oriented by the unit vector 7,is ¢, and the angular velocity is @, . The angle of rotation around the
shaft support axis oriented by the unit vector 7, is ¢, and the angular velocity is ®, (see Figure 1).
When the support shaft is vertical and the rotor shaft is horizontal and when they are without
intersection we obtain that angular velocity of rotor is: @ = o1, + @,n, = @i, + P, 1,
The angles ¢, and ¢@,are generalized coordinates in case when we investigate system with two
degrees of freedom. In this case ¢, is generalized coordinate. The second angle ¢, is a rheonomic

coordinate which is defined by a time function.

Using the theorem of angular momentum derivative the differential vector equation of the rotation
around the rotor shaft in case when the support shaft is vertical and the rotor shaft is horizontal
and when they are with or without intersection is obtained [3-5]. Scalar form of equation in a
general form is:
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@, + Q*(A—cos @,)sin g, + Q*w cosp, =0 (1)
For considering an eccentric disc constants in differential equation (1) are:

% in” —1; g(e—1)sin B 2melsin 3 2
Qz = 2 \esin ﬂ 7 24= 7 = — E
a)z 8Sin2ﬂ+l ea)jigsiHZ ﬁ_l) '// Ju—JV =1+ 2r (2)

The motion of gyro-rotor was presented by means of phase trajectories and that is done for
different cases of disk eccentricity and angle of skew. For that reason it is necessary to find first
integral of the differential equation (1). After integration of the differential equation (1) the non-
linear equation of the phase trajectories of the gyro rotor dynamics with the initial
conditionst, =0, ¢,(t,)= @y, ¢,(t,)= @, is obtained in a form:

ot =ph + ZQZ[A(COS(A —cos ¢)10)+ %(cos2 Pro —cos’ @, )+ W(sin g, —sin (Pm)} 3)

All parameters are in function of eccentricity e and angle /. So, it was very interesting to analyze

the influence of these parameters on nonlinear dynamics behavior of system. The solution of this
equation is obtained using Math Cad.
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Figure 2. Transformation of a phase trajectory for different cases of rotating
and for a corresponding initial condition

In Figure 2a transformation of a phase trajectory in a case when gyro rotor is rotating around axes
without intersection with distance between axes is a =2mm and for different initial conditions.
Figure 2b shows transformation of a phase trajectory in a case when gyro rotor is rotating around
axes that are in intersection and when gyro rotor is not inclined ($=0) and in Figure 2c
transformation of a phase trajectory in a case when gyro rotor is not eccentric (e = 0).

For gyro rotor which rotates around axes that are without intersection and for rotor that is inclined
at rotating axis it can be seen that there are stable and not stable dynamical equilibrium positions.
Also stable dynamical equilibrium position can be lost with some changes of parameters of the
system, such as angle of inclination or eccentricity. That means that dynamic unstable position can
be made stable by changing some parameters of the system.

In Figure 3, it can be noticed that the phase trajectories change shapes when system parameters are
changing. Also, analysis of rotation of a heavy gyro-rotor show that in graphical presentations of
the system kinetic parameters exits a set of the fixed points not depending of change of rigid body
eccentricity or angle of inclination or of the orthogonal distance between axes of rigid body
coupled rotations. Thus, a closed curve can cross the open i.e. oscillatory motion become non
oscillatory. Also, it can be seen trigger of coupled singularities which was the subject of Professor
K. Hearth's research [2].

2 ]
A é? N\ L
NNV /A
/¥///A \‘/// ‘//A \ fi \\{p
B E AT AN =
N =1\ 7. N

a) c)
Figure 3. Transformation of a phase trajectory for different values of disk inclination angle 3 to the axis of
self rotation (a and b) and for different values of normal distance between axes and for a corresponding
initial condition(c)
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Differential equation (1) is obtained by use vector expressions for linear momentum and for
angular momentum in a form defined in [2] using mass moment vectors. The body mass inertia
moment vectors and vector rotators are very suitable for obtaining linear momentum and angular
momentum and their derivatives of the system with coupled numerous rotations around axes
without intersections, as well as for vector method analysis of system vector parameter dynamics.
3. CONCLUSION

Applications of the new mass moment vectors for obtaining vector expressions of the kinetic
parameters of the nonlinear dynamics of the rigid body coupled rotations around two axes
without intersections, show that vector method as well as applications of the mass moment vectors
and vector rotators show us a simplest way for analysis characteristic vector structures of coupled
rotation kinetic properties. Vector components of complex dynamic structure of rigid body
coupled rotations about two axes without intersections is suitable for analysis interactions between
some of these vector component parameters and nature of each of these, no visible in the scalar
forms.

Using the derived analytical expressions of the gyro-rotor-disk coupled rotations and by standard
software tools, the numerous visualizations of phase trajectories are presented. Special attentions
are focused to the possibility that by changing system parameters unstable dynamical equilibrium
position parameters leads to a stable dynamic equilibrium position.

This method and mass moment vectors can be applied to the rigid body multi-coupled rotations as
well as for applications to the coupled multi-body system dynamics with multi-coupled rotations.
Vector form of system kinetic parameter expressions based on the mass moment vectors coupled

to axis and pole open new simpler possibilities for analysis of the system complex dynamics.
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