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Abstract: There are several technologies available to the Isogeometric Analysis (IGA) framework, of which
NURBS is most commonly used since it is the standard technology employed in CAD programs. NURBS
generalize B-Splines and consequently inherit all of their favourable properties for free-form design. NURBS
are commonly used in Computer Aided Design (CAD), Manufacturing (CAM), and Engineering (CAE) and
are part of numerous industry-wide used standards, such as IGES, STEP, ACIS, and PHIGS. NURBS are
piecewise-rational functions and allow a compact representation of geometry, can exactly represent some
simple geometries like cylinders, spheres, ellipsoids and allow easy manipulation through their control
points. Isogeometric Analysis (IGA) based on NURBS has refinement procedures analogue to h- and p-
refinement in FEA, which are respectively known as knot insertion and degree elevation. The property of
splines having a high level of derivative continuity at element interfaces also gives rise to the potentially
more powerful k-refinement, where the degree is elevated together with the continuity at the element
interfaces. In this study will show the development of a NURBS based FEM for the convection-diffusion
problem under Isogeometric Analysis (IGA). Numerical results are performed on the convection-diffusion
equation.
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1. INTRODUCTION

Isogeometric Analysis (IGA) was introduced in 2005 by Hughes et al. [8] to bring exact engineering
geometry to Finite Element Analysis (FEA) and alleviate the cumbersome process of meshing
altogether. The Isogeometric Analysis (IGA) concept unifies the two fields of CAD and FEA by
expanding the solution space using the same basis as that of the geometry description from CAD.
Since its introduction, IGA has successfully been applied to a wide variety of problems in
structural analysis [9, 10, 11], electromagnetics [12], turbulence [1, 13, 14], fluid structure
interaction [3, 4, 6, 7] and higher order partial differential equations [5]. NURBS offer almost
spectral approximation properties and all modes converge with increasing order of approximation.
These are very desirable properties in problems with wave propagation, long time integration and
a multi-scale character. These properties are mainly ascribed to the aforementioned inter-element
continuity of the basis functions.

2. NON-UNIFORM RATIONAL B-SPLINES (NURBS)

B-splines have their rational counterparts giving the ability to exactly represent objects that cannot
be represented by polynomials. For example in CAD circular and conic shapes are often used,
which can be exactly represented by NURBS. The NURBS basis is defined by associating the B-
spline basis functions with a strictly positive weight, @i as
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Lp
to B-Splines higher dimensional function spaces are constructed using tensor products of

univariate basis functions y _ y(z ;. prg:.0) = span{Nl. LON ®}

spanning the NURBS function space uniquely defined as y - y(z; p;o):= span { N }n Analogous
i=1

n,m,...

i) =1

The NURBS basis has the following properties: i). The NURBS basis constitutes a partition of unity
2 v, ) .7 ). NURBS inherit their properties from the B-Spline basis functions like continuity
[

across knots, local support and non-negativity. ii)). The NURBS basis functions are not polynomial
but rational functions. iiii). If the weights are all equal the basis is again polynomial. Hence, B-
Splines are a special case of NURBS. NURBS derivatives are found by using the quotient rule on

(1), expressing the derivative in the B-Spline basis, namely

4y (Oeo we)s; (©)-w)s; () 3)
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Then higher order derivatives are expressed in terms of lower orderderivatives as
e £ (V) at=)
i .. 4,9() ,El P (5)7—”5 =7V 9) where [ka i @)
ek Nip)T 1Z8) i) k=)
Using (1) the NURBS curve can be defined in the same way as the B-Spline curve namely
@)=Y N, ()P (5)
i=1

Figure 1 shows the construction of a circular arc. o p,

Note that one weight has the value 1f to allow
2

exact representation of the circle. The dashed line
showsthe curve when all weights are equal to one

P.,:(1.1)
o]

wa =1

and hence this curve is polynomial. Comparing 7 *
the two curves it is clear that due to the weight
the middle control point pulls the curve less
strong. il. o
In an analogous way the NURBS surface and o,
NURBS solid are defined as Figure 1: Example of the construction of a NURBS
n,m 6 uarter circle curve based on the knot vector &
S(en)= . sz _ lNiaP(g)Nj,q (n)Pi,J' © 1 ={0,0,0,1,1,1}. The dashed line indicates the
and unweighed curve
n,m,l v
end= "5 N AN, N, G )

i=1j=1k=1 " /4
Figure 2 shows the construction of a circular surface by a mapping from parameter space to
physical space using the control points and weights of the circular arc, Figure 1, for each side of the
parameter space forming a circular surface in physical space.
3. A NURBS BASED FEM FOR THE CONVECTION - DIFFUSION EQUATION UNDER
ISOGEOMETRIC ANALYSIS (IGA)
Before going to the main, Tablel summarizes the important differences and similarities between
FEM and IGA.
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Table 1: Comparison of FEM and IGA summarizing the
differences and similarities between FEM and IGA

FEM IGA

“ju(:i A Nodal points Control points
=5 Nodal variables Control variables
Mesh Knots
Element Knot span
Basis interpolates Basis
_______ nodal points and doesnotinterpolate
- = variables Compact support control points and
Figure 2: Construction of a circle using Approximate Partition of unity variables
. . geometr Isoparametric Exact geometry
NURBS. The surface is constructed using Polynomial ﬁasis concept NURBS basis
the knot vectors & =H={0,0,0,1,1,1}and Gibbs Affine covariance Variation
: ; : henomena Patch tests Diminishin,
control points and weights as shown in ubdomains satisfied Patches &

the figure.

(a) FEA (b) IGA

Figure 3: In classical FEA, Figure 3(a), the parameter space
is local to elements. Each element has its own mapping
from parameter space to physical space. In IGA, Figure

3(b), the parameter space is local to patches. Internal knots

partition the parameter space in elements. A single B-

Spline or NURBS maps parameter space to physical space.

Figure 3 illustrates what this implies from
an analysis point of view. In classical FEM
each element has its own mapping from
parameter space to physical space, Figure
3(a). While in IGA, internal knots partition
the parameter space in elements and a
single B-Spline maps parameter space to
physical space, Figure 3(b).

The mesh in IGA is directly defined by the
NURBS parametrization. Let Q' be an
open bounded domain with a boundary

0Q'. The domain is divided into subdomains ¢, o' by quadrilaterals such that ¢ ~q' - for
c e 1 J

i # j. The elements are defined as the knot spans, ¢ ~{e.¢. 1)} or tensor products thereof,
e 171+

Boundary lavers ()7 _ in higher dimensions. The
— Q= {6, @l PO &

Imternal liyer

element in physical space is defined as Q =S.Q', where S is
e e

\ the NURBS map in [8].
It A «-o  Consider the convection-diffusion equation on a domain (),
g Figure 4:
iy —xAu(x, y)+aVu(x,y)= f(x,y) in Q (8)

u=g(x,y)on T

=1

Figure 4: Problem description where u(x,y) is the concentration of a pollutant, k is the

diffusivity tensor, a is the convection velocity and f(x,y) is a
source term. The Galerkin method is used for the discretization of the convection-diffusion
problem. The needed function spaces are defined here, for the weak formulation and variational
form. Define a collection of trial solutions S, required to be square integrable and to satisfy the
boundary conditions:

S:{uueHl(Q),ur_g(x y)} (9)
Next define a collection of weighting functions v
v:{w‘weHl(Q),wrzo} (10)

where w = w(x, y). The Sobolev space, H', induces the following L2(Q) inner product and norm, viz

(.v)= fuvae and ], = ()" % (A1)
Q
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Let the solution space consist of all linear combinations of a given set of NURBS functions Na: Q -
R, where A= 1,... ,nnp. Where Na denotes the tensor product of univariate NURBS basis functions,
with A being the global equation number connected to the local numbering through the “NURBS
coordinates array” (INC-array)?>. Using the compact support property of the functions and
assuming that there exists an integer neq< nnp such that

N, =0 Vd=1..n, (12)
Hence, for all " € v", there exist constants ca, A=1,... ,Neq such that
o = 3N, (ke (13)
Then require that each Na(x,y) satisfies .
N,1)=0 v4=1..n, (14)

from which it follows by (13) that «"(1)= 0. Hence v" has dimension neq.
Next to define members of S we need to specify gh (a ”lifting”), therefore we introduce the
coefficients ga, A =1,... ,nnp. Note that it is convenient to choose gh such that g1 =...= gneq= 0 as they
have no effect on its value on I'. So,
gh: ZNA(an/)gA (15)
A:nchrl

Now apply variational form, such that for any u" € S" there exist a da, A = 1,... neq such that

uh:ZNA(x’y)dA+ Z NB(xvy)gB:zNA(x’y)dA+gh (16)

A=1 B=n,,+1 A=1

Finally combine (13), (16) and exploit linearity to obtain the expression

d n,

&
8

| [N ) - o)
¢, =0

e S gg[jvm(x,y)xvzvg(x,y)+avzvxx,y)vzvg(x,y)daj

B=n,, +1

£

=1

&

The Galerkin equation has to hold for all w" ev". By (13), this means for all ca, A =1,... ,neq. Since
the ca’s are arbitrary in (17) it follows that the term between braces must vanish. Hence, for A=1,...
MNeq , dropping arguments for brevity,

>d, U VN &VN, + aNAVNBdQ] =[N faa- g, U VN &VN, + aNAVNBdQ] (18)
B=1 Q Q B:ncq+1 Q

Now further define the matrix system,
K3 = [VN xVN, +aN VN,dQ
Q

F,=[N,faQ- Z gBUVNAKVNB + aNAVNBdQ] (19)
Then (18) becomes, after inclusion of the Dirichlet conditions,
iKABdB =F, A=l..n, (20)
B=1
Or, using matrix notation
K :[KAB]; d= {dB}; F= {FA}
to obtain the form
Kd=F (21)

where the Dirichlet condition will be treated slightly different in practice by choosing a numbering

such that
{Kn KquB} _ {FA } (22)
Ky Ky |18 FgB

Then the system can be solved as follows, viz
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Kydy=F,—K,g (23)
The assembly process takes the following form in terms of the local “node” numbers 1< a,b <nen,
K=AK;, K =[VNKVN,+aN,VN,dQ F=AF;, f‘=[N,fdQ (24)
Q Q,

e

where A is the assembly operator. Defining p _y, Z{Na,xgx’y ﬂ then the component version becomes
a a N (xy
a.y

K, =[BxB,+a'N (x,)B,d (25)
Q
The quadrature points and their weights are provided by Gauss-Legendre quadrature. The

solution is d = K'(F, - K,g,), assuming that K is invertible. Once d is known, the solution can be
constructed at any point x,y € Q using the NURBS basis, namely

u' :iNA(x’y)dA (26)
A=1
12 12 Boundary conditions in IGA are imposed in the same way

as in a classical FEM. The essential boundary conditions are
imposed on the control points. Because NURBS are non
081 o8 interpolatory strong boundary conditions tend to get
osl . smeared for higher order basis functions when

discontinuous boundary data is imposed. Figure 5 shows

0.44 0.44

— 1 this for a step profile which corresponds to the west
—p=2 ey . . . .
02 —p=3 o2 boundary conditions in the convection-diffusion problem.
T
— s \ On the left an interpolation of these conditions is shown, on
04 - - -Step 01

|y s— b the right the conditions are directly imposed on the control
Figure 5: Imposition of strong boundary points. Note that although NURBS have the variation
conditions on the west boundary of the  diminishing property they still exhibit the Gibbs
convection diffusion problem. The left
hand figure shows interpolation of the )
discontinuous data. Note that NURBS to polynomials. Furthermore note how the data gets
also exhibit the Gibbs phenomenon,  gmeared for increasing p. It is obvious that for

though much less than Lagrange . . . . .
polynomials due to the variation discontinuous data it is better to impose the data directly on

diminishing property of the B-Spline  the control points. The converse is true when smooth data is

_basis. The right hand figure shows considered. If this smearing is unacceptable a better lifting

imposition of the data directly on the
control points. Note how the boundary
condition gets smeared for increasing p. least squares approach. Another option is to impose

Dirichlet conditions weakly. Although this is an approximation of the Dirichlet condition, it comes
with great advantages. In problems with boundary layer phenomena for instance, it can help to

phenomenon, but gets less for increasing degree as opposed

can be found by a curve or surface fitting algorithm using a

eliminate spurious oscillations [2]. In addition the strong imposition is also an approximation due
to the smearing effect, thus one can argue which method is better.

For the assembly of the stiffness and mass matrix and the load vector the following general
integral must be performed

[ /()0 (27)

where f is assumed sufficiently smooth and integrable. To facilitate the integration, the integrals
are pulled from physical space to the parent element. In order to do this a change of variables has
to be performed, in 1D this becomes

P\ 28)
if(é) e
and in 2D
[ A7), ac (29)

299 Fascicule 3




ISSN: 1584-2673 [CD-Rom, online]

where ] is the Jacobian and |J! is the Jacobian determinant.
For a typical stiffness matrix component f(x,y)=VN (x,y)xVN,(x,y). The basis functions N are

defined in the parameter space () in order to define the basis in (Q we need the derivative of the

pull back DS™' = J;' and apply the chain rule, viz

VN(x,y)=J5'VN(E ) (30)
Now the integral becomes
[ VNE.7 elrsvn, 7 )], a2 (31)
Q
Lets perform the integration of (28) numerically, viz
dx d¢ dx dg > \dx d& 3
'[f(é ¢ dé & ; f( ) 5 ; f( )d«f dz >
where nip are the number of
integration points éi, Wi is the
weight corresponding to the it
integration point and r is a
residual. Gaussian quadrature is (2) Mesh 1 (b) Mesh 2 (<) Mesh 3 (d) Mesh 4
optimal in a sense that it integrates Figure 6: Refinement sequence for the unit square.
a function accurately with the least HH A
amount of quadrature points. The 5
B-spline  basis  fulfils  the ]
smoothness and  integrability s H H
conditions and is polynomial so (2) Mesh 1 (b) Mesh 2 (c) Mesh 3 id) ik :

standard Gauss rules can be

Figure 7: Refinement sequence for curvilinear 1

applied.

The last will showcase numerical
results for the linear convection-
diffusion equation. The linear

i

convection-equation is discretized.
The quality of the solution is

{a) Mesh 1

(b) Mesh 2

(c) Mesh 3

/|

/!

measured in the L2(Q)-norm
defined as
L,(@)= [[lu* ~u"J a2 (33)
Q
where ua is the analytical solution. () Mesh 1
The h-convergence results are
plotted  against the  maximum  element

circumdiameter denoted as hmax. For the linear
convection-diffusion case only qualitative results
will be shown. The meshes used for the numerical
results are shown in Figure 6, Figure 7, Figure 8 and
Figure 9.

The convection-diffusion problem (8) is solved for
k=10, a=(cos@,sinf) with §=45". The stability

parameter was chosen as T:h% ,  where
a

h :#, the element length in the flow
max{cosé),sind}

direction.
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(b} Mesh 2

(c) Mesh 3

(d) Mesh 4

Figure 8: Refinement sequence for Curvilinear 2

if’ L7
/W

(d] Mesh 4

Figure 9: Refinement sequence for curvilinear 3

(a) Top view

(b) Side view

Figure 10: Convection-diffusion at 45 degrees
flow angle for mesh 4 of Figure 6 at p=4. Clearly
visible is the smearing of the sharp layer and
boundary conditions. Note further the
smoothness of the solution due to the variation
diminishing property
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(a) Unit square. (b) Curvilinear 1. (d) Curvilinear 3.

) Curvilinear 2.

Figure 11: Convergence in the L2(Q)) norm versus hmax.

It is clear that on all meshes optimal convergence rates are attained.

La(11) ervor

-

10" | —e=mesh 1 ~—— 1

—a—mesh | T R S

- it e —— | —mmmesnn e -

T = e — S
Y M - ) e | —o—mesna e | e mesna
1 N H 1 7 2 4 H B T R 4 5 I ER 4 5 & 7
P H
(a) Unit square (b) Curvilinear 1. (<) Curvilinear 2. (d) Curvilinear 3.
Figure 12: Convergence in the L2()) norm versus p.
4. CONCLUSION

In Isogeometric Analysis (IGA) elements are defined in the parameter domain by the knot spans.
The development of a FEM based on NURBS is equal to a classical FEM. Differences are
introduced when imposing boundary conditions. Boundary conditions can be imposed directly on
the control points or by interpolation. For discontinuous data it is beneficial to impose the
boundary conditions to the control points directly. In the convection diffusion problem the sharp
layers are smeared due to the properties of the basis. Furthermore the solution is smooth due to
the variation diminishing property. The conditioning of the stiffness matrix is constant with

degree. Furthermore, poor conditioning has no implications on the accuracy of the solution.
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