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Abstract: The thermosolutal convection in Rivlin-Ericksen elastic-viscous fluid in porous medium is
considered to include the effect of suspended particles in the presence of uniform magnetic field, uniform
rotation and variable gravity field. It is found that for stationary convection, the stable solute gradient has
stabilizing effect on the system. Rotation has stabilizing effect as gravity increases upward and destabilizing
effect as gravity decreases upward whereas suspended particles have destabilizing effect as gravity increases
upward and stabilizing effect as gravity decreases upward. The medium permeability has
stabilizing/destabilizing effect depending on the rotation parameter. The magnetic field has a stabilizing
effect in ﬁ*le absence of rotation whereas in the presence of rotation it has a stabilizing/destabilizing effect
under certain conditions. The principle of exchange of stabilities is satisfied in the absence of magnetic field,
rotation and stable solute gradient. The presence of magnetic field, rotation and stable solute gradient
introduces oscillatory modes into the system.
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1. INTRODUCTION

A detailed account of the theoretical and experimental study of thermal instability (Bénard
convection) in Newtonian fluids, under varying assumptions of hydrodynamics and
hydromagnetics, has been given by Chandrasekhar [3]. The use of Boussinesq approximation has
been made throughout, which states that the density may be treated as a constant in all the terms
in equations of motion except the external force term. Chandra [2] observed a contradiction
between the theory and his experiment for the onset of convection in fluids heated from below.
Scanlon and Segel [9] studied the effect of suspended particles on the onset of Bénard convection
and found that the critical Rayleigh number was reduced solely because the heat capacity of the
pure gas was supplemented by that of the particles. Sharma [10] has studied the thermal instability
of a layer of viscoelastic (Oldroydian) fluid acted on by a uniform rotation and found that rotation
has destabilizing as well as stabilizing effects under certain conditions in contrast to that of a
Maxwell fluid where it has a destabilizing effect.

The problem of thermohaline convection in a layer of fluid heated from below and subjected to a
stable salinity gradient has been considered by Veronis [17]. In such situation, buoyancy forces can
arise not only from density differences due to variations in temperature, but also from those due to
variations in solute concentration. The conditions under which convective motions are important
in geophysical situations are usually far removed from the consideration of single component fluid
and therefore it is desirable to consider a fluid acted on by a solute gradient. Thermosolutal
convection problems arise in oceanography, limnology and engineering. Examples of particular
interest are provided by ponds built to trap solar heat (Taber and Matz, [16]) and some Antarctic
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lakes (Shirtcliffe, [14]). The physics is quite similar in the stellar case, in that helium acts like salt in
raising the density and in diffusing more slowly than heat.

There are many elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive
relations or Oldroyd’s constitutive relations. Two such classes of fluids are Rivlin-Ericksen and
Walter’s (model B') fluids. Rivlin and Ericksen [8] have proposed a theoretical model for such one
class of elastico-viscous fluids. Sharma and Aggarwal [11] have studied the effect of
compressibility and suspended particles on thermal convection in a Walters’ (model B') elastico-
viscous fluid in hydromagnetics.

The medium has been considered to be non-porous in all above studies. In recent years, the
investigation of flow of fluids through porous media has become an important topic due to the
recovery of crude oil from the pores of reservoir rocks. The stability of the flow through a porous
medium taking into account the Darcy resistance was considered by Lapwood [4] and Wooding
[18]. When the fluid permeates a porous medium, the gross effect is represented by the Darcy’s
law. As a result of this macroscopic law, the usual viscous and viscoelastic terms in the equation of

motion are replaced by the resistance term {_1( Py 9 jq} where ¢ and y' are the viscosity and
k, ot

viscoelasticity of the Rivlin-Ericksen fluid, £, is the medium permeability and ¢ is the Darcian

(filter) velocity of the fluid. A comprehensive review of the literature concerning thermal
convection in a fluid-saturated porous medium may be found in the book by Nield and Bejan [5].
Sharma et al.[12] have studied thermosolutal convection in Rivlin-Ericksen fluid in porous
medium in hydromagnetics and Sunil et al. [15] considered thermal convection in porous medium
permeated with suspended particles. Effect of rotation on thermosolutal convection in a Rivlin-
Ericksen fluid permeated with suspended particles in porous medium is investigated by Aggarwal
[1]. Thermal stability of a fluid layer under variable gravitational field heated from below or above
is investigated analytically by Pradhan and Samal [6]. Although the gravity field of the earth is
varying with height from its surface, we usually neglect this variation for laboratory purposes and
treat the field as a constant. However, this may not be the case for large-scale flows in the ocean,
the atmosphere or the mantle. It can become imperative to consider gravity as a quantity varying
with distance from the centre. Recently, Rana and Kumar [7] have studied the stability of Rivlin-
Ericksen elastico-viscous rotating fluid permeating with suspended particles under variable
gravity field in porous medium.

In the present paper, we have considered the effect of suspended particles, rotation and magnetic
field on thermosolutal convection in Rivlin-Ericksen elastico-viscous fluid in porous medium.
Here, we have extended the results reported by Sharma and Rana [13] to include the effect of
magnetic field for Rivlin-Ericksen fluid.
2. MATHEMATICAL FORMULATION
Consider an infinite horizontal fluid =d @ei
particle layer of Rivlin-Ericksen elastico- RS P SR

. . . Incompressible T DN 2
viscous fluid of thickness d bounded by  Rivlin-Ericksen S S S

the planes z=0 and z=din porous Fd O A

Z-axis g (0,0,-Agy)

medium, is acted upon by a uniform I B

rotation 0(0,0,Q), a uniform magnetic =0 — T . .= x-axis
field — H(00,H)and variable  gravity / HHHH

g(0,0,—g),where g= Kgo,g0(> O) is the

o . Heated frombelow
value of gat z=0and A can be positive or y-axis

negative as gravity increases or decreases Figure 1: Geometrical Configuration

upwards from its value g, (see figure 1).This layer is heated from below and subjected to stable
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solute gradient such that a uniform temperature gradients A =‘d7/d4 and solute concentration

gradients g’ = ‘d%z‘ are maintained across the layer.

Then the equations of motion and continuity governing the flow are

1o 1 1 o) KN 1 . 0
{fq+*(q~v)q}:—fw+g 1+ 2 14+ == (qq —q)—f(uw —]q
elLot & Lo Lo &P, k, ot

M

+£(q><Q)+L[(VxH)><H],
£ 4rp

0
V.-q=0 )
where p, p and q denote respectively, the density, the pressure and the filter velocity of the pure

fluid; q, and N(x,t)denote the velocity and number density of the suspended particles,
respectively. K = 6zpvn, where 7 is the particle radius, is the Stokes’ drag coefficient,
x = (x, v,z). Let &k, v,V stand for medium porosity, medium permeability, kinematic
viscosity of fluid and kinematic viscoelasticity of fluid, respectively.

In writing equation (1) we have assumed uniform size of fluid particles, spherical shape and small
relative velocities between the fluid and particles. Then the net effect of the suspended particles on
the fluid through porous medium is equivalent to an extra body force term per unit
volume &V (g, —q)- Since the force exerted by the fluid on the particles is equal and opposite to that

&

exerted by the particles on the fluid, there must be an extra force term, equal in magnitude but
opposite in sign, in the equation of motion of the particles. The distances between particles are
assumed to be so large compared with their diameter that interparticle reactions need not be
accounted for. The effects of pressure, gravity and Darcian force on the suspended particles
(assumed large distances apart) are negligibly small and therefore ignored. If mN is the mass of
particles per unit volume, then the equations of motion and continuity for the particles, under the
above assumptions, are

mN{%qtd+i(qd~V)qd}:KN(q_qd) ()

P %V +V(Ng,)=0 4)
Let ¢,c,,,T,C,q"and ¢" denote respectively the specific heat of fluid at constant pressure, specific

heat of fluid particles, temperature, solute concentration, effective thermal conductivity of the pure
fluid and an analogous effective solute conductivity. If we assume that the particles and the fluid
are in thermal and solute equilibrium, then the equation of heat and solute conduction gives

[pcs+pxcs(l—e)]aT+pc(q-V)T+mNcp,(e6+qd -VJT:q’VzT )
ot ot

or 0 "2 6

[pcs+p_ycs(1—£)]—+pc(q-V)T—i—mNcp, e—+q,-V|C=q"V°C (6)
Ot Ot

where p_,c, are the density and the specific heat of the solid material respectively, and ¢ is
medium porosity. The equation of state for the fluid is given by

p=pyll-a(T-T,)+a'(C-C,)], @)
where p,,T,andC, are the density, temperature and solute concentration of the fluid at bottom
surface z=0, o is the coefficient of thermal expansion and «'is the analogous coefficient of

solvent expansion.

3. THE PERTURBATION EQUATIONS

The initial state of the system, denoted by subscript 0, is taken to be a quiescent layer (no setting)
with a uniform particle distribution N, i.e. g = (0,0,0),qd = (0,0,0) and N =N, is a constant. The
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character of the equilibrium of this initial static state can be determined, as usual, by supposing
that the system is slightly disturbed and then by following its further evolution.

The steady state solution to the governing equations is

q=(0,0,0).q, =(0,00),T=T,-pz,C=C, - B z,p=p,(1+af z—a'f 2)

Let Jp, op, 0, q(u,v, W), q, (l,r,s), yand N denote respectively the small perturbations in
density p, pressure p, temperature T7,fluid velocity @(0,0,0) fluid particle velocity
q,(0,0,0), solute concentration C and number density N,. Then the linearized perturbation
equations of motion, continuity, heat conduction and solute conduction for Rivlin-Ericksen elastic-

viscous fluid-particle layer are

10 1 , KN 1 , 0
7—q:——V§p—g0(a9—ay)A+ (qd_q)_(/“"/‘]q
e 0t P, &, 1Po ot

+L(qxﬂ)+ 'uie(Vxh)xH

&, 4mp (8)
V.q=0 9)
e N N(V-q,)=0 (10)
ot
(’"aﬂJqd -q h
K ot
(E +hg)% = B(w+hs)+ V>0 (12)
ot
(E’+he)% — Bw+hs)+ Ny (13)
where, f = S ,f:LNO’,(: 9 ,K’:q—, v:ﬁ,andv’:i
c Po Po€ PoC Po Po

In writing equation (8), use has been made of the Boussinesq equation of state
op=—py(abd-a'y).
4. EXACT SOLUTION AND DISPERSION RELATION
Analyzing the perturbations into normal modes by seeking solutions in the form
[w,0,7.h.,£,]= W (2),0(2),T(2),K(2), Z(2), X (2)]- expik x + ik, y + nt) (14)
where &,k are the wave numbers along x and y directions respectively, and k= (k; +kf,)% is the

resultant wave number of the disturbance and n is the growth rate which is, in general , a complex

constant and 42@_@ and éz:%_ahx stand for the z-components of vorticity and current density,
& &y
respectively. Eliminating the physical quantities using the non-dimensional parameters
d? v v ) N k V'
a:kd O-:n 7 =y ! = —y 7T, = /M:m 0, :E/ = —L F:*E:E-th,
s D D, P P, PO d? o P, 7 Py d2° FEN 1

E,=E'+he,H=1+h,D" =dD and dropping (*) for convenience, the linearized dimensionless
perturbation equations are

2 72 3
la(u M ]+1+F0](Dz—a2)W:—ga 4 (00 —-aT)-22 " py

& l+z7,0 P, D ve (15)
N 1Y
4mp 0
o, M | 1+Fo Z:[ZQdJDWereHd Dy (16)
£ l+70 P, &L 47p,0
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2
(0 —a* — ot p )0 = _(ﬂd ][H*"jw (17)
K l+7,0
72
(0 - _aEzp;)r:_(ﬂ d ](H*UJW (18)
K I+7,0
(D> -a* - pyo )k =9 py (19)
n
(0*—a® - po)x =— 19 p7 (20)
n

Eliminating Z, K, ©, ' and X between the equations (15) — (20), we obtain

{[U[H_ M J 1+F0](D2_a2_p20_)+Qﬁ}|:0{1+ M }+1+F0']( —aZ—O'E,pl)
e\ l+ro B e l+r0 B

(D2 —oE,p, XDZ -a’ - pzc;'XD2 -a )W

=[H+rlg]az(D2 -a —pza) {[“{H M J+1+Fa](D2 -a —pza)+QDz} (21)
I+70 e l+t0 B

{M(D2 -a —o’Ezpl')—SZ(DZ -a’ —oE,p, )}
_%‘(D2 -a —o’EIpIXD2 -a —(szp[).(D2 -a —pzo*)zDzW

&

o M 1+Fo
+Ox| —| 1+ +
el l+t0 P

4 '
where, R = 8 ¢ the thermal Rayleigh number, § = % is the analogous solute Rayleigh
VK VK

(D2 -a —p20)+QDz}(D2 -a —aElpl)(D2 -a —aEzp{XD2 —az)DzW

/JEHZdZ
4mpyvn
Consider the case where both the boundaries are free from stresses and perfect conductors of heat

2
number, 7 - (ZQd ’ j is the Taylor number and g = is the Chandrasekhar number.

14

and solute, the medium adjoining the fluid is perfectly conducting and temperatures at the
boundaries are kept fixed. The boundary conditions appropriate for the problem are
(Chandrasekhar [3])

W =D*W =0, ©=I'=0, DK =0 when z =0 and 1 (22)
Proper solution of W characterizing the lowest mode is

W =W, sinz z where W, is a constant. (23)

Substituting the proper solution (23) in equation (21), we obtain the dispersion relation

Roie l+x+iE p o, zal M (1+11‘—b' thj l+ito 7
| . .
1+x+iE p,o, 1+ZT or P H+it o7 |

(1+X+1E1p10'1)(1+x) 1+l‘[ o nz) (l+x+lalp2)(l +x+zEp10'1)
& (H+l‘[10'ﬁ2) o M \ 1+ifo @ ,
i1+ + l+x+io p,)+Q
e 1+i1101712J P
+0, (1+i710'17T2) (1+x)(l+x+Elp10'1)
(H+irlaliz2) (I+x+io, p,) (24)
2
where Rlzﬁ’ Slzi’ leg, T, :l, x:i, icrlzg and P=7x’P,.
z* z* T’ ' r’ 7’

Equation (24) is the required dispersion relation including the effects of magnetic field, rotation,
medium permeability, kinematic viscosity, stable solute gradient and variable gravity field on the
thermosolutal instability of Rivlin-Ericksen fluid in porous medium. The dispersion relation
vanishes to the one derived by Sharma and Rana [13] if the magnetic field parameter is vanishing.
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5. THE STATIONARY CONVECTION
For stationary convection, the marginal state will be characterized by o = 0. Thus equation (24)
reduces to

R =S5+

(l+x)(1+x +Qlj+ T, : (1+x)’ (25)
xHA XAH & (M+Qlj
P

P
The above relation expresses the modified Rayleigh number R, as a function of the modified
solute gradient parameter S,, modified magnetic field parameter (,, suspended particles
parameter /, modified rotation parameters 7T, , medium permeability parameter P and
dimensionless wave numberx. The parameter /' accounting for the kinematic viscoelasticity
vanishes for the stationary convection and the Rivlin-Ericksen fluid behaves like an ordinary

Newtonian fluid. To study the effect of stable solute gradient, magnetic field, suspended particles,
dR,

rotation and permeability, we examine the nature of 4R, dR, dR dR and analytically.
ds, do, dH dT,
Equation (25) yields
R _y (26)
ds,

which is positive implying thereby that the effect of stable solute gradient is to stabilize the system.
This is in agreement with the result of figure 2 where R, is plotted against S, forH =60,

P=0.001, 7, =20, ¢=0.15, 0, =200, 1=2, x=2,4,6,8,10 and figure 3 where R,is plotted
against x for S, =20,40,60,80. This stabilizing effect of stable solute gradient is in good agreement

with the earlier works of Sharma and Rana [13].

245 - 130
——x=2
—8—x=4
205 —A—x6
=8 110 |
g e g \\‘M
[ Ko}
2165 €
£ S
2 Z 90
5 B
2125 1 E .\-\l\u—-—J/'/./‘
) ¢
& ——81=20
70
85 - < —=—S1=40
[ —a— S1=60
5 $1=80
45 . . 50 T T | |
0 50 100 04 0.8 1.2 1.6 2
Solute Gradient Wave Number
Figure 2: Variation of R, with S| Figure 3: Variation of R, with x
From equation (25), we get
drR, 1 (1+x) (27)
2 1+
ar, ng/l( Px+Q]]

which shows that rotation has a stabilizing effect on the system in porous medium when gravity
increases upwards from its value g((i.e.4>0) and destabilizes the system when gravity decreases

upwards. Also figure 4 and 5 confirms the above result numerically for
fixedH =10, P=0.2, §, =40,£=0.15,0, =200, A=2 and various values of x and

T, respectively. This stabilizing effect of rotation is in good agreement with earlier works of

Sharma and Rana [13] and Rana and Kumar [7].
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—e—TA1=20
—=— TA1=80
75
—a—TA1=140
TA1=200
5 70 5 70 -
Q
£ § 4
3 z
-4 = 65
< )
2 2 4
>
g 60 & 60 1

55
50 ! T T T T T 1 50 . . . .
0 40 80 120 160 200 240 1 3 5 7 9
Rotation Wave Number
Figure 4: Variation of R, with T, Figure 5: Variation of R, with x

Also from equation (25), we get
(28)

dﬁz_(l+x) (1+x)+£ (1+x)
dH  xAH*| P g (HX +0 J
P
which is negative, implying thereby that the effect of suspended particles is to destabilize the
system when gravity increases upwards (i.e.A>0) and stabilizes the system when gravity
decreases upwards. Also in figures 6 and 7, R, decreases with the increase in H which confirms

+0

the above result numerically. This result is in agreement with the result of Sharma and Aggarwal
[11] in which effect of compressibility and suspended particles is investigated on thermal
convection in a Walters” B' elastico-viscous fluid in hydromagnetics.

22 + 15 -
20 1 14
= 18 | 3
] '213 |
£ S
3 z
5" 5
S 212 |
>
e 14 | @
11
12
10 10 : T T T )
‘ ‘ ‘ ‘ ‘ 1 2 3 4 5
0 20 40 60 80 10(
Suspended Particles Wave Number
Figure 6: Variation of R, with H Figure 7: Variation of R, with x

It is evident from equation (25) that

drR _ (x| 1 T (ex) (29)
dP xH | P* & (1+x+PQ,)
dR, _(1+x) 1—2 (1+x)P° (30)
40, Ho | & (1+x+PQ)

4 R,

In the absence of rotation (7, =0), CZI;‘ is always negative an is always positive, which
1
means that medium permeability has a destabilizing effect, whereas magnetic field has a

stabilizing effect on the system when gravity increases upwards from its value g,. For a rotating
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system, when gravity increases upwards, the medium permeability has a destabilizing (stabilizing)
effect and magnetic field has a stabilizing (destabilizing) effect if

1+x+PO,)
7, < (or »){H2 PO o (31)
P21+ x)
45 37 -
——x=2 —=—Q1=60
—a—x=4
x=6 35 |
40
* x=8 . P!
3 / —x—x=10 .g 33 |
=]
g 35 - z
z )
) L8531
3 z
3 4 [
€ 30 | o
25 T T T T T 27 T T T T
20 60 100 140 180 220 1 3 5 - 9
Magnetic Field Wave Number
Figure 8: Variation of R, with O, Figure 9: Variation of R, with x
28 ~ 50 -
—— =2 —e—P=0.01
’Y el —=—P=0.05
x=6 45 4
24 4| =8 —a—P=0.09
@ —%—x=10 v 40 J P=0.25
8 3
£ £
20 | 35 4
5 )
° s
s, =
s @ 30
16 |
25
12 T T T T 1 20 T T 1
0 0.1 0.2 0.3 04 0. 0 1 2 3

Permeability

Figure 10: Variation of R, with P

Wave Number

Figure 11: Variation of R, with x

14 - 3 —=—Q1=60
—e—P=0.03 ] — o1=100
—= P=005 < Q1=140
132 | —a—P=0.09
—+—Q1=180
P=0.25 29 1
3 5
12.4 |
z z
5 : 25 |
%116 | 3
e 5
14
108 - \A\.—.—.———r———‘"—" 21
[
10 17 : : : :
0.2 0.9 16 23 3 1 3 9

Wave Number

Figure 12: Variation of R, with x for 7, =0
for H=10,P=0.13, 8, =10,6=0.15,1=2 and

In figure 8, R, is plotted against O,

x=2,4,6,8,10. Figure 9 represents the graph of Rayleigh number

5 7
Wave Number

Figure 13: Variation of R, with xfor 7, =0

R, x for

versus

0, =60,100,140,180. Here, we find that magnetic field has stabilizing as well as destabilizing effect
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under condition (31). In figure 10, R, is potted against P for 7, =100, H =40,
0,=30,8 =10,6=0.15,4=2 andx = 2,4,6,8,10 whereas figure 11 represents R, versus x for
P =0.01, 0.05, 0.09, 0.25. These figures show that the permeability has destabilizing (stabilizing)
effect in the presence of rotation under condition (31).

In figure 12, R, is plotted against wave number x for S, =10,7, =0, H =10, £ =0.15, O, =30,
A =2 and different values of permeability parameter P =0.03, 0.05, 0.09, 0.25 and figure 13
shows the graph of R, versusx for §, =10,H=100,7, =0,£=0.15,4=2 and
0, =60,100,140,180. Figure 12 shows stabilizing effect of magnetic field whereas figure 13 shows

the destabilizing effect of medium permeability in the absence of rotation .
6. STABILITY OF THE SYSTEM AND OSCILLATORY MODES

Multiplying equation (15) by W', the complex conjugate of ¥, and integrating over the range of z

1 2521
z 1+L +ﬂ .jW*(DZ—aZ)Wdz+MJW*(a®—aTyz
€ 1+17,0 P, 0

P v 0
31
2 s pg e djW*(DZ a*)DKdz =0
ev o 4zpyv o (32)
Integrating equation (32) and using boundary conditions (22) - (23) together with equations (16) -

(20), we obtain
lg.a| 1 * 'K .
o M| I A IRnoT Jak G L e o 1) (1, vo* Epl)
el l+10 P v \H+to*) B ‘s

PP Ll PUREC BN PO L 6—’”"’7‘12 (1, + pyo 1)+ L1, + pyo*1,]=0
3 l+70* P 4mp,v 4mp,v (33)
1 1 1 1 L
where, 1, — [(pw] + 2| iz, 1, = [(DOf +a?l0 bz, 1, =j\®\2dz,, 1= [prf + |’ e, 1= rf .
0 0 0

jz\ dz, I, = QD)(\ va?| x| o 1 —I\X\ dz, I, _mD k[ +24°|DK[ +a* |k sz / 110:IQDK\ +a’|K[’ )d
0 0

and o’ is the Complex conjugate of o. The integrals [, —1,, are all positive definite. Putting

o =i0, (O' =—i Gi) in equation (33) and equating imaginary parts, we obtain
2
R A
€ l+o/71; P, v H?+olt} )| B p' (34)
lgoa’| H+altl
0; o (L AR -5 E p1; + 25 E,ps =0
v H>+ol1} B B’
2
-d’ L 1+ M +£16_,uel’/d Pals — L 234
& l+olc] P, 4mp v 4mp v
In the absence of rotation, magnetic field and solute gradient, equation (34) reduces to
Ag.a’ -
Ll +£Il+ ga’n | H-l 2,
& l+o’t} ) P v H>+olt} ) B (35)
o, =0
lgoa’ ax H+olt}
+°E1P1[2“ 5
v H” +0;1;

Equation (35) implies that o, is zero (as the terms in the bracket are positive definite) in the

absence of rotation, magnetic field and stable solute gradient, which means that oscillatory modes
are not allowed and the principle of exchange of stabilities is satisfied. It is evident from equation
(34) that the presence of magnetic field, rotation and stable solute gradient introduces oscillatory
modes (as o, may not be zero).
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7. CONCLUSIONS

In this section, we have studied the effect of magnetic field, rotation, variable gravity field and

suspended particles on thermosolutal convection in Rivlin-Ericksen elastico-viscous fluid

saturating a porous medium. The principal conclusions from the analysis are as follows:

v' For stationary convection, the suspended particles have destabilizing effect for 4>0 and
stabilizing effect for 4 <0.

v When gravity increases upwards (i.e. 4> 0), the medium permeability has a destabilizing effect
in the absence of rotation whereas in the presence of rotation it has a destabilizing effect when

< (l+x+PQ,) .2 and has stabilizing effect when 7 >M e,
P(1+x) AT P+ x)

v" The magnetic field has a stabilizing effect in the absence of rotation when gravity increases

4

upwards whereas in the presence of rotation it has a stabilizing effect when 7 (1+ JEEL ro 3 ) e?
' P (1+x

and has destabilizing effect when 7 (+x+PQ,) g2
' P*(1+x)

v" For stationary convection, the stable solute gradient is found to have stabilizing effect whereas
effect of rotation is stabilizing for 4 >0 and destabilizing for 4 <0.

v" The principle of exchange of stabilities is satisfied in the absence of magnetic field, rotation and
stable solute gradient. The presence of magnetic field, rotation and stable solute gradient
introduces oscillatory modes (as ¢, may not be zero).
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