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Abstract: In control engineering, a state space representation is a mathematical model of a physical system as a set of input, output and state 
variables related by first-order differential equations. To abstract from the number of inputs, outputs and states, the variables are expressed as 
vectors. Additionally, if the dynamical systems linear and time invariant, the differential and algebraic equations may be written in matrix 
form. The state space representation (also known as the "time-domain approach") provides a convenient and compact way to model and 
analyze systems with multiple inputs and outputs. With P inputs and Q outputs, we would otherwise have to write down Q x P Laplace 
transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state space representation is 
not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. 
The state of the system can be represented as a vector within that space. 
Keywords: control engineering, space representation, mathematical model, differential equations 
 
1. INTRODUCTION 
The representation of the state space is a representation in the time domain. Therefore, the system’s analysis calls for defined 
performance indicators in this domain: stability, overshoot, rising time etc. In addition, there are two performance indicators: 
controllability and observability whose inputs are needed to characterize this representation. Furthermore, we can mention the 
new possibilities to describe the second order systems, using the state space trajectories and energy curves, which lead to a better 
understanding of these systems; by using the dominant pole approximation we can 
determine the systems of higher order. 
The matrix form of this representation allows the implementation of numerical 
algorithms to determine the indices that are mentioned in the case of systems of 
higher order, which can ultimately lead to a higher accuracy synthesis of the 
controller. 
The representation of the dynamical model of the system in state space is a relation 
of this type: input - state - output. For linear and continuous systems, this relation is 
represented by a matrix and can be illustrated as a block diagram (figure 1). 
The model described has the following analytical form (1) 
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in which: x is the state vector of the system (1xr); y is the vector of the output states (1xm);  u is the input vector of the control 
states (input) (1xn);  A is the inertia matrix of dimension (rxr) ;  B is the command matrix of dimension (rxn) ;  C is the output matrix 
of dimension (mxr);  D is the transfer matrix of dimension (mxn) ;  
This means the following: 
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Figure 1. the block diagram 
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The state of a system represents the minimum set of variables x1, x2,…, xr, the knowledge of which (at moment t = t0) together 
with the input signal into the system completely determines the behavior of the system at any given time t ≥ t0. 
The state variables store all the past information of the phenomena (t <t0) that is needed to identify the future evolution of the 
system. To determine this (minimum) number, the following observation is made: the dynamic analysis for t = t0 requires solving 
some differential equations, which implies the definition of the initial conditions of the system that stores the previous behavior of 
the system (t <t0). Consequently, the number of state variables is equal to the number of initial conditions required. Moreover, due 
to the fact that for the simulation of the integral element systems they are used as memory elements, the outputs of these can be a 
set of state variables. Thus, the number of state variables becomes equal to the number of integral elements used in the 
simulation. 
The state vector of a system is the vector whose components are state variables x = [x1, x2,…, xr]T.  
It is important to point out the fact that the state variables can have different models and can belong or not to the quantifiable 
physical measurements.  
The state space is the r-dimensional space described with the help of the reference axes: x1, x2,..., xr; the state of the system, at a 
certain moment  represents a point space with the coordinates x1, x2,..., xr.  The evolution of the system is described by means of a 
trajectory referenced by this coordinate system.  
The methods used for system’s analysis and synthesis that uses the state space representation represents a modern method of 
investigation. Their success is due to the following: 
 the use of state space representation implies matrix computation which are easily implemented in computer programs; 
 the representation allows a uniform treatment for both SISO and MIMO systems types. In both cases the system is 

represented by two matrix equations (which differ in terms of size); 
 using this representation allows rewriting models with high order partial differential equations and their transformation 

into ordinary differential equations (matrix) of first degree; 
 the state space representation has led to methods that allows unified treatment for continuous and discrete systems, 

linear and nonlinear. [3] 
2. THE SYNTHESIS OF A CONTROL SYSTEM FOR A RR ROBOT 
The robot that will be controlled has the following structural (mechanical) structure (figure 2) 

 
Figure 2. The stucture 
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The dynamic model of the structure is as follows (3) in which: 
 m1/2 are the masses of the elements; 
 1/2Jzz are the inertia moments of the elements related to the z-axis; 
 l1/2 are the lengths of the elements;  
 C11/22 are the positions of the centers of mass;  
 bq1/2 are the angular positions of the joints;  
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 sq1 means sin(q1); cq2=cos(q2) ;  
 τ1/2 are the momentums of the joints.   

2.1. Mechanical transmission 
The mechanical transmission is mathematical modeled with the following equations (4): 
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in which: q1/2 is the angular position of the joints; qm1/2 2 is the angular position of the motor shaft 1/2; τ1/2 is the momentum of the 
two joints, T1/2 is the momentum of the two motors; I1/2 is the transmission ratio for each motor separately. 
The DC motor (it will be used the same type of motor for both joints) is an electro-mechanical system (see figure 3). 
 
 

 
 
 

Figure 3. The electro-mechanical system  
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2/1m2/1M2/1m TqbiKJq −−=                   (6) 
where: V is the supply voltage of the motor; T is the resistive torque; Ra 
is the winding resistance; L is the winding inductance; i is the winding 
current; J is the inertia momentum (armature +  shaft); KMi is the 
driving torque: KM is the coefficient of the motor torque; b is the 
coefficient of the viscous friction; qm is the armature’s position; E is the 
e.m.f. force given by the relation: mbqKE = , in which: Kb is the e.m.f. 
constant; mq  is the rotor speed; 
The model’s parameters are given in Table 1. 
2.2. The analysis of the dynamical model 
The analysis of the achieved dynamical model  begins with the structural analysis of the RR robot system. Figure 4 shows a block 
diagram of this system. 
 
 
 
 
 

 
 
 

Figure 4. The block diagram of this system 

 
Figure 5. The structure of diagram 4 
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Table 1. The model’s parameters 
System Parameter 1 2 

Mechanical 
structure 

m [kg] 0.7 0.5 
J [Nms2/rad] 1.8e-3 0.78e-3 

l [m] 0.5 0.35 
c [m] 0.25 0.125 

Transmission i 150 150 

D.C. Motor 

J [Nms2/rad] 233e-6 
L [H] 0.5 

Ra [Ω] 0.8 
b [Nms/rad] 0.1 

KM [Nm/amp] 176e-3 
Kb [Vs/rad] 0.105 
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It can be noted that the connections of the subsystems and the variables transformation. 
Because the reference variable controlled in this system is the angle of the motor shaft (referred as r1/2 or qd1/2), the structure of 
diagram 4 can be represented as in figure 5: 
The problem is reduced to the position control of the two D.C. motors. The system is perturbed with a torque T1/2. These momentums 
are calculated using the equations (3) and (4). We use the Laplace operator on the equations (5) and (6) : 

( ) ( ) ( ) ( ) ( )sTsGsVsGsQ TVm ⋅+⋅=        (7) 
in which: Qm(s) is the Laplace transform of the value qm; V(s) is the Laplace transform of the value V; T(s) is the Laplace transform of 
the value T; GV(s) is the transfer function: 
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GT(s) is the transfer function: 
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If we replace the variables in the transfer functions (GV and GT) with the values from table 1 we obtain the following system: 

 
Figure 6. The new system 
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According to the control strategy adopted in this case (fig. 7) the 
controlled system has the transfer function GV(s). One may have 
the following observations, regarding the equation 11: 
 because it has a pole in the origin, the closed loop 

(undisturbed) system leads to zero stationary error. This can be 
stated as follows: it is sufficient to use a proportional controller for 
obtaining a zero stationary error (for step signal); 
Several aspects can be noticed: 
 if we use only a P controller the error is not eliminated  

( )
K
54.4

qm =∞                               (14) 

where: K is the proportional coefficient of the controller 
In order to eliminate the perturbation (qm(∞) = 0) it is 
necessary to insert a new controller with a pole in the origin. 
Consequently, the poles of the transfer function of the plant are:  

 
Figure 7. The adopted control strategy  
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 the step response of the unperturbed closed loop system is 
presented in figure 8: 
The overshoot is limited to σ ≅ 20% and the settling time ts ≅ 4 s. 
However, in case of industrial robots the imposed performance for the 
controller needs to be: σ<5%, ts < 1 s. 
The disturbance T1/2 introduced by the resistive (load) torques (τ1/2) has 
the property to be boundary limited. 
Following observations resulted from this 
 The control strategy consist in asserting the D.C. motor to the 

fixed part of the plant and forcing the rest of the subsystems to act as a 
disturbance generator.  
 according to the mathematical formulations of this systems the 

disturbances which occur are boundary limited. 
2.3. Controller synthesis 
The state vector has the following structure: 

[ ]iqqx =       (16) 
where: q is the position angle (degrees); q is the angular speed of the rotor shaft;  i is the current supplied to the motor 
Consequently, the new form of the system becomes: 
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 [ ] x001y ⋅=       (18) 
That which, by replacing of the values from table 1 results: 
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according to the principle of superposition of effects, the model of the unperturbed system is: 
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and the perturbation’s effect over the motor (the model of the perturbation) is: 
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By applying the synthesis algorithm, the following steps are needed: 
Step 1: Implementing the problems’ initial data: 

 
Figure 8. The unperturbed closed loop system 
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Step 2: Controllability check: 
[ ] 4B̂ÂB̂ÂB̂ÂB̂rang 32 = :     (24) 

the system is controllable; 
Step 3: The calculus of the characteristic polynomial: 

 ( ) 25600s8960s110s56ss 234 ++++=Θ      (25) 
Step 4:.The determination of the agreement matrix parameters: 

[ ][ ] ( ) [ ]94.163923.1876441.1069309.5ÂB̂ÂB̂ÂB̂ÂB̂1000K̂
132 −−=Θ⋅⋅=
−

         (26) 
Step 5: The simulation result is achieved using 
the scheme in Figure 9 (Simulink). The artifice 
that allowed the use of this scheme was the 
transformation of the output matrix in:  
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The K blocks were also used in the scheme: Ki: 
16.94 - gain;  
-  matrix’s gain:  

[ ]3923.1876441.1069309.5K −= ; 
The simulation results: the step response of the 
system and the perturbation’s annulations are 
represented in the Table 2. 

Table 2. The system and the perturbation’s annulations 
Step response Perturbation’s annulations 

  
qd is the unit step input signal; the perturbation is zero. The 

response acquired is a critical damped signal, which is compatible 
with the objectives of the control system. In addition, the settling 

time is reduced at 1 sec. 

qd is nil; the perturbation is a step signal. Finally, the perturbation 
is totally annihilated. 

 

The result obtained allows the simulation of the entire robot. Thus, a block diagram can be implemented in Simulink (figure 10); 
this diagram must also simulate the effect of the perturbations (the dynamic of the mechanical structure – (26)) over the two 
controlled D.C. motors. 

 
 

 

 

 
 

 

 

 
Figure 9. The simulation result 
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Figure 10. Block diagram implemented in Simulink 
The scheme for the remote controlled robot, presented in figure 10, contains the following blocks: 
 qd1/2 are unitary step signal generators and they represent the desired position angles in the robot’s joints; 
 The disturbances1/2 are the blocks which use the representation in state space and which transfer in Simulink the disturbance 

model (diagram 7). The blocks are equivalent but have different outputs T1 and T2; 
 The structure is a block, which results from a MATLAB function and which allows the determination of the two moments T1/2. 

The function is the transposing in program of the equations (3) and (4). That is, it is the solution for the reverse dynamic model 
of the structure, in conjunction with the cinematic model of the movement transmission. The input data of the function are: 

2m2m2m1m1m1m qqq;qqq  ; and the output ones are: T1 and T2; 
 ddq1/2 are two blocks which calculate the accelerations from the robot’s joints. In the case of this control strategy through the 

adoption of the state vector (diagram 4) it has been created the possibility to implement the controller practically. This fact 
has led to the necessity of the indirect calculation of the accelerations from the robot’s joints. It is important to mention the 
fact that this aspect occurs only in case of system simulation and the fact that the mentioned block is based on equation (6) 

 qm1/2 are the block which allow the display of the variables which occur in the robot’s joints and which are systematized in 
table 3. 

Table 3. The variables which occur in the robot’s joints 
Motor 1 Motor 2 

The rotating angle of the motor shaft 

  
The desired angle of the joint was modeled using a unit step signal. More specifically, the robot was required to rotate each coupling with 
an angle of a radian. In both cases it can be observed that the objectives sets are achieved: establishing an operating mode for obtaining a 

critically amortization regime and a stabilization time smaller than a second. 
The supply voltage of the two motors 

  
The low voltage of the two DC motors is due to the high ratio of transmission used  

for the transmission of the movement from the motor to the structure. 
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The result acquired allows the achievement of the performance indices imposed (censorious behavior damped with the growth 
time shorter that one second). However, for a greater security in the validity of the proposed solution, there are needed some 
simulations of the controlled system and in the frequency domain.  
3. CONCLUSIONS 
The present paper approaches the design problem of the control system of a robotic arm using the space state. The solution 
suggested can be easily implemented in practice and allows the acquisition of some very good driving performances, making use of 
the whole model of the system (motor + transmission + structure). 
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