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Abstract: In this paper, the new powerful and efficient technique named Reconstruction of Variational Iteration Method (RVIM) is applied to 
find the analytic and approximate solutions for nonlinear diffusion equations. The RVIM technique is independent of any small parameters at 
all. The algorithm overcomes the difficulty arising in calculating nonlinear intricately terms. Besides, it provides us with a simple way to ensure 
the convergence of solution series, so that we can always get enough accuracy in approximations as well as this method is capable of reducing 
the size of calculation. The obtained numerical results compared with the analytic solutions show that the method provides remarkable 
accuracy for different values of time (t) and distance (x). 
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1. INTRODUCTION 
Differential equations are widely used to describe physical problems. In most cases, the exact solution of these problems may not 
be available. In addition, it is much easier computing and analyzing these solutions by means of the numerical methods without 
wasting time or spending money for experimenting problems. Alternatively, the numerical methods can provide approximate 
solutions rather than the exact solutions. But most of these methods have low accuracy and are highly time consuming. Reaching 
to a high accurate approximation for linear and nonlinear equations has always been important while it challenges tasks in science 
and engineering. Therefore several numbers of approximate methods have been established like Homotopy perturbation Method 
(HPM) Variational Iteration Method (VIM) and many other methods so on each of which has advantages and disadvantages [1-12]. 
We introduce a new analytical method of nonlinear problems called the reconstruction of variational iteration method, which in 
the case of comparing with VIM [1-4] and HPM [5-8], not uses Lagrange multiplier as variational methods do and not requires 
small parameter in equations as the perturbation techniques. RVIM has been shown to solve a large class of nonlinear problems 
with approximations converging to solutions rapidly, effectively, easily, and accurately. The method used gives rapidly convergent 
successive approximations. As stated before, we aim to achieve analytic solutions to problems. We also aim to approve that the 
reconstruction of variational iteration method is powerful, efficient, and promising in handling scientific and engineering 
problems.  
2. BASIC IDEA OF RVIM 
For convenience of the reader, to clarify the basic idea of our proposed method in [15], we consider the following differential 
equation: 

Lu(x1,⋯,xn)+Nu(x1,⋯,xn)=f(x1,⋯,xn)              (1) 
Suppose that  

Lu(x1,⋯,xn)=∑ Lxiu(xi)n
i=0       (2) 

where 𝐿𝐿 is a linear operator, 𝑁𝑁 a nonlinear operator and 𝑓𝑓(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) an inhomogeneous term.  
We can rewrite Eq. (1) as follows: 

Lxju(x1,⋯,xn)= f(x1,⋯,xn)-Nu(x1,⋯,xn)-∑ Lxiu(xi)n
i=0
i≠j�������������������������

w(u(x1,⋯,xn))

              (3) 

Therefore  L_(x_j ) u(x_1,⋯,x_n )=w(u(x_1,⋯,x_n )) 
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The Reconstruction of variational iteration method assumes a series solution for u(x,t) given by an infinite sum of components 

u(x1,⋯,xn)= lim
n→∞

un(x1,⋯,xn) = lim
n→∞

� vi(x1,⋯,xn)
n

i=0

 

Where 𝑣𝑣0 is the solution of Lxju = 0, with initial conditions of the main problem,  

v1(x1,⋯,xn)=φ(v0); vi+1(x1,⋯,xn)=φ�∑ vi(x1,⋯,xn)i
i=0 �-∑ vi(x1,⋯,xn)i

i=1 ,        i≥1 
Which that φ(vi) is obtained as   

Lxjφ(vi)=w(u(x1,⋯,xn))              (4) 
Therefore by taking Laplace transform of both sides of the Eq. (4) in the usual way and using the artificial initial conditions equal to 
zero in case of finding φ(vi), we obtain the result as follows 

P(s).Φi �x1,⋯,xi-1,s,xi+1,xn�=ϖ�vi �x1,⋯,xi-1,s,xi+1,xn��           (5) 

where L[φ(vi)]=Φi,  𝑃𝑃(𝑠𝑠) is a polynomial with the degree of the highest derivative in Eq. (5), The same as the highest order 
of the linear operator Lxj . So that 

L[w]=ϖ       (6-a) 
Ψ(s)= 1

P(s)
                   (6-b) 

L[ψ(xi)]=Ψ(s)                (6-c) 

In Eq. (6-a) the function ϖ�vi �x1,⋯,xi-1,s,xi+1,xn�� and  w �vi �x1,⋯,xi-1,xi,xi+1,xn�� 

have been abbreviated as 𝜛𝜛,𝑤𝑤 respectively. So, rewrite Eq. (5) as;  

Φi �x1,⋯,xi-1,s,xi+1,xn�=ϖ�vi �x1,⋯,xi-1,s,xi+1,xn�� .Ψ(s)         (7) 

Now, by applying the inverse Laplace Transform to both sides of Eq. (7) and using the Convolution Theorem, we have; 

φ(vi)=∫ w �vi �x1,⋯,xi-1,τ,xi+1,xn�� .ψ�xi-τ�dτxi
0                                          (8) 

Therefore 

un+1(x1,⋯,xn)=∑ vi
n+1
i=0 =u0(x1,⋯,xn)+∫ w �un �x1,⋯,xi-1,τ,xi+1,xn�� .ψ�xi-τ�dτxi

0           (9) 

Identifying the initial approximation of 𝑢𝑢0, the remaining approximations 𝑢𝑢𝑛𝑛 , 𝑛𝑛 > 0 can be determined such that each terms is 
determined by using the previous terms, and the approximation  of iteration formula entirely will be evaluated. Consequently, the 
exact solution could be obtained by using: 

u= lim
n→∞

un= lim
n→∞

∑ vi
n
i=0                             (10) 

  In what follows, we will apply the RVIM method to homogeneous/non-homogeneous, linear and nonlinear diffusion equations to 
illustrate the strength of this method and to establish exact solutions for these problems. 
3. APPLICATION OF RVIM TO DIFFUSION EQUATIONS 
In this section, we consider studying the nonlinear diffusion equations [16-19] 
Example 1. 

ut=(uxu2)x                      (11) 
u(x,0)= x+a

2c
                  (12) 

where a and c are arbitrary constants. This equation models a slow diffusion process such as evaporation and melting [15]. Here, 
auxiliary linear operator is selected as Ltu(x,t)=ut. By using the Eq. (11) we have the following operator form equation: 

Ltu(x,t)=ut= (uxu2)x
�����
w(u(x,t))

         (13) 
Therefore 𝜑𝜑(𝑣𝑣𝑖𝑖) is defined as  

φ(vi)=∫ w�vi(x,τ)�dτt
0          (14) 

Then by using the Eq. (14), the RVIM method formula in t-direction for calculation of the approximate solution of equation (10), 
can be readily obtained as  

un+1(x,t)=∑ vi(x,t)i
i=0 =u0(x,t)+∫ [(un(x,τ))2.ux(x,τ)]x

t
0 dτ           (15) 

Whereas, the initial approximation must be satisfy with the following equations 
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Ltu(x,t)=0,     u(x,0)=
x+a
2c

 

Therefore we begin with u0(x,t)=v0= x+a
2c

,  accordingly by the equation (15) one can get the higher order approximation  
of the exact solution as the following relations;   

u1(x,t)=� vi(x,t)
1

i=0

=
x+a
2c

+
x+a
4c3 t 

u2(x,t)=� vi(x,t)
2

i=0

=
x+a
2c

+
x+a
4c3 t+

3
16

x+a
c5 t2+

1
16

x+a
c7 t3+

1
128

x+a
c9 t4 

The remaining approximations  un(x, t), n > 3 can be completely determined such that each term is determined by using 
previous term, and thus, the nth solution is given in the closed form.  

u(x,t)= lim
n→∞

un(x,t) =  lim
n→∞

∑ vi(x,t)n
i=0 = x+a

2�c2-t
 ,        t<c2               (16) 

To verify numerically whether the proposed RVIM method 
leads to higher accuracy, we can evaluate the numerical 
solutions. Using nth approximation shows the high degree of 
accuracy and un the nth approximation is accurate for quite 
low of n (n = 4). From the obtained numerical result 
summarized in Table 1 we conclude that the method, RVIM 
method for slow diffusion equation, gives remarkable accuracy. 
The behavior of the solutions obtained by the RVIM method is 
shown for different values of time in comparison with exact 
solution, Table 2 and Table 3. 

 

Table 1. The numerical results for u4(x, t) in comparison  
with the exact solution u(x, t)  when a=2, c=4 

 x Exact 
solution 

Numerical 
solution Absolute error 

t =
 0.

1 

0.1 0.2633241778 0.2633241779 1.446735283E−34 
0.2 0.2758634244 0.2758634244 4.599377423E−32 
0.3 0.2884026710 0.2884026709 0. 
0.4 0.3009419176 0.3009419175 1.000000000E−10 
0.5 0.3134811641 0.3134811641 3.672200000E−11 

t =
 0.

3 

0.1 0.2649960942 0.2649960942 0. 
0.2 0.2776149558 0.2776149558 0. 
0.3 0.2902338175 0.2902338173 1.000000000E−10 
0.4 0.3028526791 0.3028526791 4.075811508E−11 
0.5 0.3154715408 0.3154715407 1.134868300E−10 

t =
 0.

5 

0.1 0.2667002667 0.2667002665 2.000000000E−10 
0.2 0.2794002794 0.2794002792 3.000000000E−10 
0.3 0.2921002921 0.2921002919 3.000000000E−10 
0.4 0.3048003048 0.3048003045 2.084616600E−10 
0.5 0.3175003175 0.3175003173 2.000000000E−10 

t =
 1 

0.1 0.2711088342 0.2711088281 6.16413416208 E-9 
0.2 0.2840187788 0.2840187723 6.45766436028 E-9 
0.3 0.2969287231 0.2969287164 6.75119455846 E-9 
0.4 0.3098386677 0.3098386607 7.04472475667 E-9 
0.5 0.3227486122 0.3227486049 7.33825495487E-9 

t =
 1.

5 

0.1 0.2757435090 0.2757434583 5.072010000000 E-8 
0.2 0.2888741522 0.2888740992 5.313543813713 E-8 
0.3 0.3020047956 0.3020047402 5.555077271956 E-8 
0.4 0.3151354388 0.3151353809 5.796580135960 E-8 
0.5 0.3282660821 0.3282660218 6.038110000000 E-8 

t =
 2.

5 

0.1 0.2806243040 0.2857730326 7.7068000000 E-7 
0.2 0.2939873660 0.2993812723 8.0736000000 E-7 
0.3 0.3073504282 0.3129895120 8.4408000000 E-7 
0.4 0.3207134903 0.3265977516 8.8075000000 E-7 
0.5 0.3340765525 0.3402059913 9.1747158760 E-7 

t =
 3 

0.1 0.2857738034 0.2912155114 0.000002091643 
0.2 0.2993820797 0.3050829167 0.000002191246 
0.3 0.3129903560 0.3189503221 0.000002290847 
0.4 0.3265986324 0.3328177272 0.000002390449 
0.5 0.3402069088 0.3466851325 0.000002490052 

 

Table 2. The numerical results for u7(x, t) in comparison withthe exact 
solution u(x, t) when  h=1, c=1 

x Absolute error 
[t = 0.1] 

Absolute error 
[t = 0.3] 

Absolute error 
[t = 0.5] 

1 1.000000000 E -9 5.400000000 E -8 0.0000106050000 
2 1.000000000 E -9 8.000000000 E -8 0.0000159070000 
3 1.272493000 E -9 1.069690000 E -7 0.0000212078400 
4 2.000000000 E -9 1.340000000 E -7 0.0000265120000 
5 2.000000000 E -9 1.620000000 E -7 0.0000318160000 
6 1.000000000 E -9 1.880000000 E -7 0.0000371160000 
7 2.000000000 E -9 2.140000000 E -7 0.0000424220000 
8 2.000000000 E -9 2.410000000 E -7 0.0000477210000 
9 2.750000000 E -9 2.692500000 E -7 0.0000530220000 

10 4.000000000 E -9 2.960000000 E -7 0.0000583247453 
Table 3. The numerical results for u7(x, t) in comparison with the 

exact solution u(x, t) when c=10 

x Absolute error 
[t = 0.1] 

Absolute error 
[t = 0.3] 

Absolute error 
[t = 0.5] 

1 9.984046216 E -13 7.884295969 E -10 8.252386953 E -8 
2 1.039936184 E -10 2.953718377 E -9 3.301954779 E -7 
3 2.089856415 E -10 7.095866433 E -9 7.427148233 E -7 
4 1.015974474E -9 1.161487360 E -8 0.000001320381914 
5 2.496011554 E -11 1.871073992 E -8 0.000002063096735 
6 1.035942566 E -9 2.738346543 E -8 0.000002971859303 
7 1.048921827 E -9 3.663305031 E -8 0.000004045669683 
8 1.063897896 E -9 4.745949396 E -8 0.000005284527655 
9 2.080870775 E -9 6.186279738 E -8 0.000006682433509 

10 9.984046216 E -11 7.884295969 E -8 0.000008252386953 
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Example 2. 

ut=(uxu2)x                                                     (17) 
With initial condition 

𝑢𝑢(𝑥𝑥, 0) = 𝑥𝑥+ℎ
2√𝑐𝑐

, 
where ℎ, 𝑐𝑐 > 0, are arbitrary contacts. 
At first, auxiliary linear operator is selected as  

Ltu(x,t)=ut= (uxu2)x
�����
w(u(x,t))

             (18) 
Therefore φ(vi) is defined as  

φ(vi)=∫ w�vi(x,τ)�dτt
0             (19) 

So using the Eq. (18) and (19) we obtain the following RVIM's iteration formula in t-direction: 
un+1(x,t)=∑ vi(x,t)n+1

i=0 =u0(x,t)+∫ (un
2(x,τ)unx(x,τ))x

t
0 dτ      (20) 

The subscript n indicates the nth approximation of the solution; we can obtain the other components with selecting the initial 
approximation as:  

u0(x,t)= x+h
2√c

             (21) 

So with the iteration formula (20), we obtain the following successive approximations 

u1(x,t)=� vi(x,t)
1

i=0
=

x+h
2√c

�1+
t

2c�
 

u2(x,t)=∑ 𝑣𝑣𝑖𝑖(𝑥𝑥, 𝑡𝑡) = 1
128

(𝑥𝑥+ℎ)
𝑐𝑐9/2

2
𝑖𝑖=0 𝑡𝑡4 + 1

16
(𝑥𝑥+ℎ)
𝑐𝑐7/2  t3 + 3

16
(𝑥𝑥+ℎ)
𝑐𝑐5/2  𝑡𝑡2 + 1

4
(𝑥𝑥+ℎ)
𝑐𝑐3/2  𝑡𝑡 + 1

2
(𝑥𝑥+ℎ)
𝑐𝑐1/2  

And so on. In the same manner, the rest of components of the iteration Eq. (20) can be obtained. Therefore, the solution of u(x, t) in 
closed form is 

u(x,t)= lim
n→∞

un(x,t) = lim
n→∞

� vi(x,t)=
n

i=0

x+h
2√c-t

 

The obtained numerical result is summarized in Table 2.  
Example 3.  

ut=(uxu)x                (22) 

u(x,0)=
x2

c
 

Where 𝑎𝑎, 𝑐𝑐 ≠ 0, are arbitrary contacts. At first, auxiliary linear operator is selected as  

Ltu(x,t)=utt= (uxu)x
���

w(u(x,t))

      (23) 
Therefore 𝜑𝜑(𝑣𝑣𝑖𝑖) is defined as  

φ(vi)=∫ w�vi(x,τ)�dτt
0         (24) 

So RVIM's iteration formula in t-direction can be readily obtained. 
un+1(x,t)=∑ vi(x,t)n+1

i=0 =u0(x,t)+∫ (un(x,τ)unx(x,τ))x
t

0 dτ        (25) 

The subscript n indicates the nth approximation; by considering the given initial values, we can select u0(x,t)=v0= x2

c
. By 

substituting u0(x,t) to Eq. (25), we have; 

u1(x,t)=� vi(x,t)
1

i=0

=x2 �
1
c

+
6t
c2� 

u2(x,t)=� vi(x,t)
2

i=0

=x2 �
1
c

+
6t
c2 +

36t2

c3 +
72t3

c4 � 

And so on. In the same manner, the rest of components of the iteration formula, Eq. (25) can be obtained. Therefore, the solution of 
u(x, t) in closed form is 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJ4-4PYYG29-7&_user=4449892&_coverDate=05%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000063163&_version=1&_urlVersion=0&_userid=4449892&md5=5d2f7eeb6d0b97661de6b85d5ecd9f21%23fd14


ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

197 | Fascicule 1 

u(x,t)= lim
n→∞

un(x,t) = lim
n→∞

� vi(x,t)
n

i=0

=
x2

c-6t
 

The obtained numerical result is summarized in Table 3.  
Example 4. 

𝑢𝑢𝑡𝑡 = (𝑢𝑢𝑥𝑥𝑢𝑢−1)𝑥𝑥                      (26) 
With initial condition, 

u(x,0)=
2c

(x+a)2 

where 𝑎𝑎, 𝑐𝑐 ≠ 0, are arbitrary contacts. As said before, auxiliary linear operator which that plays an important role in choosing the 
initial approximation of the solution, is selected as 

Ltu(x,t)=utt= �uxu-1�
x

=w(u(x,t)            (27) 

Using Eqs. (19) and (24), RVIM's iteration formula in t-direction can be readily obtained. 

un+1(x,t)=∑ vi(x,t)n+1
i=0 =u0(x,t)+∫ �u-1(x,τ)ux(x,τ)�

x

t
0 dτ                    (28) 

By this assumption that u0 is the solution of ¸𝐿𝐿𝑡𝑡𝑢𝑢 = 0, we start with the initial approximation as  
𝑢𝑢0(𝑥𝑥, 𝑡𝑡) = 2𝑐𝑐

(𝑥𝑥+𝑎𝑎)2
                (29) 

And with the iteration Eq. (28), we obtain the following successive approximations 

u1(x,t)=� vi(x,t)
1

i=0

=
2c

(x+a)2 +
2t

(x+a)2 

u2(x,t)=� vi(x,t)
2

i=0

=
2c

(x+a)2 +
2t

(x+a)2 

Continuing in this manner, we can obtain un+1(x,t)=un(x,t) for n>1, which means that the exact solution of Eq. (21) is 
easily obtained in the form 

u(x,t)= lim
n→∞

un(x,t) = lim
n→∞

� vi(x,t)
n

i=0

=
2c

(x+a)2 +
2t

(x+a)2 

4. CONCLUSION 
In this paper, the RVIM method has been successfully applied to find the solution of the nonlinear diffusion equations governing 
the diffusion project and to show the power of this method and its significant features. It gives rapidly convergent successive 
approximations through using the RVIM's iteration relation without any restrictive assumptions or transformation that may change 
the physical behavior of the problems.  
Moreover, RVIM reduces the size of calculations by not requiring the tedious Adomian polynomials, and hence the iteration is direct 
and straightforward. The solutions obtained by the RVIM method for appropriate initial conditions, can be, in turn, expressed in a 
closed form, the exact solution. The results reported here provide further evidence of the usefulness of RVIM for finding the analytic 
and numeric solutions for the linear and nonlinear diffusion equations and, it is also a promising method to solve different types of 
nonlinear equations in mathematical physics. 
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