
 
 
 

ANNALS of Faculty Engineering Hunedoara 
– International Journal of Engineering 

 
 

175 | Fascicule 3 

 
 

Tome XIII [2015] – Fascicule 3 [August] 
ISSN: 1584-2673 [CD-Rom; online] 
a free-access multidisciplinary publication of the Faculty of Engineering Hunedoara 

 

 

1. Anca-Elena IORDAN 
 

INTERACTIVE SOFTWARE DESIGN FOR SHAPING ELECTRICAL CIRCUITS 
UTILIZING GRAPHS 

 
1. University Politechnica Timisoara, Engineering Faculty Hunedoara, ROMANIA 

 
Abstract: This work illustrates the necessary phases for the object oriented development of new software dedicated to the study of electrical 
circuits by means of graphs theory. The modelling of the interactive software is accomplished by specific UML diagrams representing the 
phases of analysis, design and implementation. The analysis phaseis characterizedby two types of UMLdiagrams:use-case diagramandactivity 
diagrams. The design phaseis characterized bythree types ofdiagrams:class diagram, state diagramsandinteractiondiagrams. Implementation 
phase it corresponds the component diagram.This software is meant for teachers and students that teach, explore or evaluate electric circuits, 
because electrical engineering domain, especially electrical circuits, is complicated to master for the great majority of students. 
Keywords: Electrical Circuits, Graph Algorithms, UML Diagrams, Java 
 

1. INTRODUCTION 
Electrical circuit theory [1] is the most significant and the oldest branch of electrical engineering. In engineering education it is 
deemed meaningful the study of electrical circuit theory. Mastering the concepts and phenomena specific to the theory of electrical 
circuits is important in the understanding of electric power systems [2,3], telecommunication, electronics [4] and control theory.  
One of the major purposes in the teaching the theory of electrical circuits consists in helping the students to better understanding 
and mastery of the subject. 
2. ANALYSIS PHASE 
UML [5] provides support for the 
achievement of object oriented 
analysis and design of high quality, 
which is an essential paradigm to get 
a robust, expandable and reusability 
software. The use-case diagram [6] 
offers simplified and graphical 
representation of what the interactive 
software must really do. Use-case 
diagram is based upon functionality 
and thus will focus on the "what" 
offers the interactive software and not 
the "how" will be realized. To achieve 
the diagram was used the ArgoUML 
software [7].  
Use case diagram is created in an 
iterative manner. Use case diagram, which is shown in figure 1, includes:  
 three actor - the users which represent outside parties with which the software interacts;  
 15 use cases that describe the purposes of the interactive software; 
 Relations between actor and use cases, relations between use cases and relations between actors.  
For every use caseofthe previousdiagramwas achievedanactivity diagram. Eachactivity diagram specifies processes and algorithms 
used to achieve the purpose specified bythe use-case.  

 
Figure 1. Use-case diagram  



ISSN: 1584-2673 [CD-ROM]; ISSN: 1584-2673 [online] 
 

176 | Fascicule 3 

3. DESIGN PHASE 
Class diagram [8] representsthe main 
blockofobject-orientedmodeling. It is 
used both for static conceptual modeling 
software as well as detailed modeling 
aimed at translating in programming 
source code.  For achieving the objectives 
of software were identified required 
classes and the relationships between 
them. 
To memorize the vertices of the graph 
has been implemented “Varf” class. To 
memorize the arcs of the graph has been 
implemented “Arc” class. To memorize a 
graph has been implemented “Graf” 
class. For the drawing of a minimum 
spanning tree has been implemented 
“DesenGreedy” class. For the drawing of 
a graph has been implemented 
“DesenGraf” class. 
In order to achieve the window that will 
form graphical user interface of the 
application has been implemented “Proiect” class. To simulate Prim algorithm has been implemented “Prim” class. To simulate 
Sollin algorithm has been implemented “Sollin” class. 
In figure 2 are presented inheritance, composition, aggregation, and realization relations. We can observe that the “Proiect” class 
inherit attributes and methods of the “JFrame” class, but implements the “ActionListener” interface. 
“Parametru” class inherits attributes and methods of the “JDialog” class, but implements the interface “ActionListener”. “Desen” 
class inherit attributes and methods of the “JPanel” class, but implements “Runnable” interface, and “DesenGraf” class inherits 
attributes and methods of the “Desen” class and implements the “MouseInputListener” interface. 
In the composition relation, unlike the aggregation relation, the instance cannot exist without the party objects. Analysing figure 
2 we can observe that an instance of “Arc” type consists in two objects of “Varf” type. Aggregation relation is an association where 
it is specified who is integer and who is a part. For example, an object of “Arc” type represents a part from an object of “Graf” type. 
4. IMPLEMENTATION PHASE 
The component diagram [9] enables the visualizationmodulesthat composethe softwareandthedependenciesbetween them. The 
diagram that is shown in figure 3 describes the collection of components that all together ensure the functionality of the interactive 
software. 
The central component of the diagram is “Proiect.class”, a component obtained by transforming using the Java compiler into 
executable code the “Proiect.java” component. As it can be seen the component interacts directly with component 
“Fereastra.class”. 
The component “Fereastra.class” that is obtained by transforming using Java compiler into executable code the component 
“Fereastra.java”interactionsdirectlywithcomponents “DesenGraf.class”, “Desen.class”, “Matrices.class”, “Cospanning.class”, 
“CutSetMethod.class”, “LoopMethod.class”, “SignalFlow.class”, “Parametru.class” and“Greedy.class”. Component “Greedy.class” is 
obtained by transforming into executable code using Java compiler the component “Greedy.java” interactions directly with 
components “Prim.class”, “Kruskal.class”and “Sollin.class”. 
The component “Desen.class”thatisobtainedbytransformingintoexecutable code using Java compiler the component “Desen.java 
”interactions directly with components “DesenGraf.class”, “DesenGreedy.class”, “DesenCoates.class”, “DesenCospanning.class”, 
“DesenCutSet.class”, “DesenLoop.class”and “DesenMason.class”. 
The component “DesenGreedy.class” that is obtained by transforming into executable code using Java compiler the component 
“DesenGreedy.java” interactions directly with components “Graf.class”, “DesenKruskal.class”, “DesenSollin.class” and 
“DesenPrim.class”. The component “Graf.class” that is obtained by transforming into executable code using Java compiler the 
component “Graf.java”, interactions directly with two components: “Arc.class” and “Varf.class”.  
 

 
Figure 2. Class diagram 



ANNALS of Faculty Engineering Hunedoara– International Journal of Engineering 
 

177 | Fascicule 3 
 

 

 
Figure 3. Component diagram 

5. GRAPHICAL INTERFACE 
The interactive software was implemented in Java [10,11] as independent application. By using visual simulations in computer 
assisted learning the efficiency of learning is increased.  
Starting from specified requisites in use cases diagram (figure 1) it was designed graphical user interface of the interactive software 
that contains a bar with five menus.  
First menu contains the following options: 
≡ New graph – permits creating a new graph associated to an electrical circuit by specifying the vertices and arcs using mouse. 
≡ Load graph – permits graphical representation of a graph read from an existing file. 
≡ Save graph – permits saving the information about a current graph. 
≡ Exit – permits to exit from an application, any unsaved graph is being lost. 
The second menu contains four options that will permit the determination of the adjacency matrix, the incidence matrix, the cut 
matrix and the circuit matrix of the current graph associated to an electrical circuit. 
Options of Tree menu permits the determination of the spanning tree corresponding to the current graph by selecting an algorithm 
and de determination of cospanning tree. The submenu contains three options corresponding to the three greedy algorithms for 
the determination of the minimum spanning tree: Prim algorithm [12], Kruskal algorithm [13] and Sollin algorithm[14]. 
Options of the next menu permits the electrical network analysis using two methods [15]: loop method and cutset method. 
The last menu offers the possibility to resolve over problems corresponding to electrical circuits using Mason graphs or Coates 
graphs. The Coates graph [16] associated with matrix A is a weighted directed graph whose adjacency matrix is the transpose of 
the matrix A. For a matrix A, given in the first relation, the transpose matrix is presented in the second relation and the 
corresponding Coates graph is shown in figure 4.  
The Coates graph associated with matrix A+In, where In is identity matrix, is called the Mason graph [17] associated with matrix A. 
For the Coates graph, presented in figure 4, the corresponding Mason graph is shown in figure 5. 



ISSN: 1584-2673 [CD-ROM]; ISSN: 1584-2673 [online] 
 

178 | Fascicule 3 



















−
−−
−−

0000

2002030

100010

3010200
                                                                                                 (1) 



















−−

−−
−

0201030

00010

020020

030100
                                                                                                 (2) 

 
Figure 4. Coates graph 

 
Figure 5. Mason graph 

6. CONCLUSIONS 
Through representation of diagrams for all three phases: analysis, design and implementation, the interactive software has been 
presented in a comprehensible and concise mode. The use of the Unified Modelling Language for the realization of the diagrams is 
characterized by rigorous syntactic, rich semantic and visual modelling support. The diagrams were made using a new onset, 
multidisciplinary of the informatics application, encompassing both modern pedagogy methodologies and discipline specific 
components. The nexus of teaching activities and scientific aims and objectives was established through the development of the 
new methods and the assimilation of new ways, capable of enhancing school performance, enabling students to acquire the 
knowledge and techniques required and apply them in optimum conditions. 
REFERENCES 
[1.] C. Pănoiu, R. Rob, I. Baciu, M. Pănoiu, Shunt Active Filter Command Designed in LabVIEW, International Journal of Circuits, Systems and 

Signal Processing,Vol. 5, pp. 513-520, 2011 
[2.] C. Pănoiu, R. Rob, M. Pănoiu, Memorizing, Playing and Editing Songs Using LabVIEW Environment, AWER Procedia Information 

Technology and Computer Science,Vol. 2, pp. 222-227, 2012  
[3.] C. Panoiu, I. Baciu, M. Pănoiu, C. Cuntan, Simulation Results on the Currents Harmonics Mitigation on the Railway Station Line Feed Using 

a Data Acquisition System, WSEAS Transaction on Electronics, Vol. 4, pp. 227-236, 2007 
[4.] I. Baciu, C. Cuntan, R. Rob, C. Pănoiu, Accentuating of the Resulting Effects after Connecting Power Active Filters on Supplying Line of 

the Electric Traction System, International Journal of Circuits, Systems and Signal Processing, Vol. 5, pp. 505-512,2011 
[5.] J. Odell, Advanced Object Oriented Analysis& Design using UML, Cambrige University Press, 1998  
[6.] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001 
[7.] http://argouml.tigris.org  
[8.] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling Language User Guide”, Addison Wesley, 1999 
[9.] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison Wesley, 1999  
[10.] J. Skansholm, Java from the Beginning, Addison Wesley Press, 2005 
[11.] J. Bloch, Effective Java, Pearson Education, 2008 
[12.] S. Even, Graph Algprithms, Cambridge University Press, 2012 
[13.] J. Harris, J. Hirst, M. Mossinghoff, Combinatorics and Graph Teory, Springer-Verlag Press, 2008 
[14.] M. Daniel, Graph Theory, Mathematical Association of America, 2008 
[15.] J. Gross, Graph Theory and its Applications, Taylor & Francis Ltd, 2005 
[16.] L. Surhone, M. Timpledon, S. Marseken, Coates Graph, VDM Publishing, 2010 
[17.] W. C. Chen, Graph Theory and its Engineering Applications, Advanced Series in Electrical and Computer Engineering, World Scientific 

Publishing, 1997 
 

ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 
* * * 

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, 
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA 

http://annals.fih.upt.ro 


