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Abstract: This paper witnesses the coupling of an analytical series expansion method Reduced Differential Transform with fractional complex
transforms. The proposed technique is applied on three mathematical models subject to the appropriate initial conditions which arise in
mathematical physics.The derivatives are defined in the Jumarie’s sense. The accuracy, efficiency, and convergence of the proposed technique

are demonstrated through the numerical examples.
Keywords: Fractional differential equation, Jumarie’s fractional derivative,Fractional complex transform method, Reduced Differential
Transform method

1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) are mathematical models that are used to describe complex phenomena arising in
the world around us. The nonlinear equations appear in many applications of science and engineering such as fluid dynamics,
plasma physics, hydrodynamics, solid state physics, optical fibers, acoustics and other disciplines. In the recent years, many authors
mainly had paid attention to study solutions of NLPDEs by using various methods including; Adomian Decomposition (ADM) [1],
Variational Iteration (VIM) [2], Homotopy Perturbation (HPM) [3], Homotopy Analysis (HAM) [4], F-Expansion [5], Exp-function [6],
sine—cosine method([7], Differential Transform (DTM) [8-12],.It has received much attention since it has applied to solve a wide
variety of problems by many authors [13—20].

2. JUMARIE'S FRACTIONAL DERIVATIVE

Some useful formulas and results of Jumarie's fractional derivative were summarized [25].

D?c=0,a>0, c=constant. 1))

D& [cf(x)]=cDZF(x),0t>0, c= constant. 2)
a, B _ F(H'B) B-o 3
DX Tl p )x B>a>0. (3)

05 [F(C)a (e =P (c)a(x)+ F)p o)} g

D%f( (O)=f (X (2). 5)

3. FRACTIONAL COMPLEX TRANSFORM METHOD (FCTM)
The fractional complex transform was first proposed [26] and is defined as
__pt?
CT(a+1)
__af
CT(B+1)

ky?

r(1+v)
_ 1z
T T(1+2)
where p, g, k, and / are unknown constants, 0 < ot <1, 0<B<1, 0<y<T, 0<A<LT.
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4. REDUCED DIFFERENTIAL TRANSFORM METHOD (RDTM)
To illustrate the basic idea of the DTM, The differential transform of k™ derivative of a function u (x, ), which is analytic and
differentiated continuously in the domain of interest, is defined as
k
U (x)=%{a”—(kx’t)} : 7)
| ot t—t,
The differential inverse transform of U, (x) is defined as follows:

u(x,o:éuk(x)(t—to)k, 9

Equation (8) is known as the Taylor series expansion of u(x,t), around t=t . Combining equations (7) and (8)

2 1] 6 u(x.t) )
u(x,t)=>" ﬁ{ : (t—to )", 9)
k=0 O Jiy
when 7, =0, above equation reduces to
o0 k
u(x,t)=zl 0 u(:'t) ik (10)

and equation (2) reduces to

Theorem 1: Ifthe original function s u(x,t)=w(x,t)+v(x,t), then the transformed function is Uy (x)=W (x)+Vi (x)
Theorem 2: Ifu(x,t)=cw(x,t), then Uy (x)=ctW ().

Theorem 3: If u(x,t):M, then U, (x):@Wk (x).
ot" :

Theorem 4: Ifu(x,t)= ow(xt)

, then U, (x):%wk (x).

Theorem 5: Ifu(x,y,t)zw, then Uy, (x,y):aiwk (x.y).
X X

ow(x,y,z,t)

Theorem 6: Ifu(x,y,z,t)= >
X

, then y, (x,y,z):iwk (x,y,2).
ox
Theorem 7: Ifu(x,t)=x"t"w(x,t), then Uy (x)=x"W, _, (x).
) k
Theorem 8: fu(x,t)=w" (x,t), then U (x)=">"W, (x)W _, (x).
r=0
5. NUMERICAL APPLICATIONS
To show the efficiency of the fractional complex transform method coupled with reduced differential transform method described
in the previous part, we present some examples.
= The Fractional Kaup—Kupershmidt(FKK) Equation
Consider the nonlinear KK equation [23,24]:

0% o°u _ &% 250ud SUZQ—

0, (12)
a% o’ o 3 Oxpx? ox

with the initial condition
U 2k
+ o ,
T+e (1+ek")Z
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wherek is an arbitrary constant.

Applying the transformation [26], we get the following partial differential equation
ou_ou_ S o' 0u
o &x° o3 3 Ox oy X

Applying the Differential Transform to Eq. (14) and Eq. (13), we obtain the following recursive formula

U (x) & 2. (x) 25&
sy (U,

20”55y S e 0. o

OX r=0 OX 8x r=0s=k 0

=0, (14)

(k1)1 (x)=

Using the initial condition, we have

2 2
U (x)=—2k2+24k __ M (16)

1+ (1+ek")2

Now, substituting Eq. (16) into (15), and by straightforward iterative steps, yields
264k (14 ¢ 1452612 g — o2 1) 3520 e (170 1 1720 3 4q)
Uy (x)=— Uy (x)=— U3 (x)

7 X)= B
(1+ekx)3 (1+ekx) (1+ek")5
and so on.

The series solution is given by
T )

2 2 7 kx kx
Tt 22 e [1se )T .

kx - 4
1+e (1+ekx)2 (1+ekx)3 (1+ekx) (1+ek’()S
The inverse transformation will yield
4K 2K 264KTe" (14e”) ¢
T+e* (1+ekx)2 (1+ekx)3 T(o+1)
1452k %" (4™ —e™ —1) % 3524k7e"(-11e" +11e™ —e® 1) £
- - - + - 5 +...
(1+ekx) r (a+1) (1+ekX) T (a+1)
This solution is convergent to the exact solution
24k 24k
(x,t)=—2k"+ — :
(L (1+ekx+11k5t)‘

= The Generalized Fractional Drinfeld—Sokolov (GFDS) Equations

We consider the system of generalized Fractional Drinfeld—Sokolov (GFDS) equations [21,22]:
B 3 o
X X
oy v 0<x,t<n,0<[3£1, (18)

352K e (—11ekX 11724 e +1) 1
"+

u(x,t)=—2k" +

(17)

with the initial conditions
—b? —4k*
u(x,0)=T+2k tanh’ (kx ), v(x,0)=btanh(kx ). (19)
where ¢ isa constant.
Applying the transformation [26], we get the following partial differential equations

oau o ou ov®

TS -6 —=0,

el 6)( ; OX OX (20)
a0 Gy

a3 x

Applying the Differential Transform to Eq. (20) and Eq. (19), we obtain the following recursive formula
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oV, (x) & au.(x) oV (x
DY G L
(21)
3 k
(e (02T g5y, g2
OX p—ry OX
Using the initial condition, we have
U (x):_b2 —4 +2k” tanh’ (kx)
’ 4K? (22)
V, (x)=Dbtanh(kx).
Now, substituting Eq. (22) into Eq. (21) when (& = 2 ), and by straightforward iterative steps, yields
K4k + 307 binhi(k) 1b{ak? +302)
U1(X): 3 ! (): 2 !
cosh(kx) 2 cosh(kx)*k
1 (2cosh(kx)2 —3X4k2 +3b2)2 1 b(4k2 +3b2)zsinh(kx)
Uy (x)=— N Vs (x)= 3,2
2 cosh(kx ) 4 cosh(ke)’k
1 sinh(kx)(zcosh(kx)2 —3X4|<2 +3b2)3 1 b(2cosh(kx)2 —3X4k2 +3|oz)3 :
U3(X)= 5 ’V3(X): 3 4 "
3 kcosh(kx ) 24 k” cosh(kx)
and so on.
The series solution is given by
S T) okt 4 22 +2k(4k2+3b2)sinh(kx)T_ 1 (2cosh(kx)2—3X4i(2+3b2)2 .
1+e" (1+ek")2 cosh(kx) 2 cosh(kx)
] sinh(kx)(2cosh(kx)’ —3 )(4k? +3b? ) _
3 kcosh(kx )’
2, a2 2 a2 ¥ 2 2, a2
V(X,T)thanh(kx)+1b(4k +3b )T_1b(4k +3b )25|nh(kx)T2+ 1 b(zcosh(kx) —3X4k +3b )3T3+
2 cosh(k)’k 4 cosh(kx)*k? 24 k3 cosh(kx)*
The inverse transformation will yield
. o 2
ym gy 22 +2k(4k2+3b2)s;nh(kx) t 1(2cosh(kx)2—3X41(2+3b2) _
1+e™ (1+ekx) cosh(kx) F(oc+1) 2 cosh(kx)
t** 1 sinh(kx)(Zcosh(kx)2 —3X4k2 +3b’ )3 t*
+ +...
’(o+1) 3 kcosh(kx )’ I (ou+1)
1b(4k2 +3b2) t* 1b(4k2 +3b2)zsinh(kx) ¢ b(zcosh(kx)2 —3X4k2 +3|o2)3 £
v=btanh(kx)+ + +...
2 osh(ke)2k T(a+1) 4 cosh(x)’k?  T2(a+1) 24 k® cosh(ke)* 3 (a+1)
This solution is convergent to the exact solution
2 4 2 b 2 4
u(x,t)=ﬂ+2k2 tanh? [kx +ut].,v(x,t):btanh(kx +Mt} (23)
4K 2k 2k
= System of Coupled Fractional Sine-Gordon Equations
We now consider a system of coupled sine-Gordon equations [27,28]:
0™ u o )
——————=-a"sin(u-v),
o’ ox 0<xt<m0<a<], (24)
o“v  ,0v .
P —C W:sm(u—v),

with the initial conditions
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Applying the transformation [26] to Eq. (24), we get the following partial differential equations
or?  ox?
or?  ox?
Applying the Differential Transform to Eq. (26) and Eq. (25), we obtain the following recursive formula
| 2 | 2
)2 et 0 2y )2 2y o) @)
Using the initial condition, we have

——a’ sin(u—v),

=sin(u—v),

Ug (x)=Acosh(kx),U5 (x)=0,V, (x)=0, V; (x)=0. (28)
Now, substituting Eq. (28) into Eq. (27), and by straightforward iterative steps, yields
Uy ()= Ak? co;h(kx) a? sin(A;osh(kx))’V2 ()= sin(Acozsh(kx))’ U(x)=0,V5 (x)=0,
Us(x)= Ak* cosh(kx) N a’A%? sin(Acosh(kx)) _a®A%k? sin(Acosh(kx))cos? (kx)
24 24 24
N aAk? cos(Acosh(kx ))cos(kx ) N a* cos(Acosh(kx ) )sin(Acosh(kx)) N a? cos(Acosh(kx ))sin(A cosh(kx ))
12 24 24
2A%? sin(Acosh(kx)) %2 sin(A cosh(kx))cosh2 (kx) 2Ak? cos(Acosh(kx ))cosh(kx)
Vy(x)= + -
24 24 24
_ Ak? cos(Acosh(kx))cosh(kx)  a” cos(Acosh(kx))sincosh(kx) _cos(Acosh(kx))sincosh(kx)
24 24 24 '

and so on.
The series solution is given by
Ak* coshi(kx) . a?A%? sin(Acosh(kx)) a*A%K? sin(Acoshikx ) cos? (kx)
2% 2% 2%
2 2. 25,2 4 ,
o, T)= Acosh(kx)—[Ak cosh(kx)+ a sm(Acosh(kx))JTz 42 Ak * cos(Acosh(kx))cos(kx ) L2 cos(Acosh(kx))sin(Acosh(k)) T,

2 12 24
. a2 cos(Acosh(ke))sin(Acosh(kx))
24

A%k sin(Acosh(kx )) . ¢2A%k” sin(Acosh(kx))cosh? (kx)  c*Ak? cos(Acosh(kx))cosh(kx)
" T):sin(Acosh(kx))Tz . 2% 24 2%
2 Ak cos(Acosh(k ))cosh(kx ) a* cos(Acosh(kx))sincosh(kx) _ cos(Acosh(kx ))sincosh(kx)
2 2% 2

(EN

The inverse transformation will yield
Akt cosh(kx ) N alA%? sin(Acosh(kx)) B alA? sin(Acosh(kx))cos2 (kx)
24 24 24
2 2 20 24,2 4 ; 4o
(1,T)=Acosh(i)— Ak cosh(kx)+a sm(Acosh(kx)ﬂ t A Ak cos(Acosh(kx))cos(kx)+a cos(Acosh(kx ) )sin(Acosh(kx ) t
2 (as) 12 % r(ot1)
. a? cos(Acosh(ke))sin(Acosh(kx))
24

A% sin(Acosh(kx)) N A%’ sin(Acosh(kx))cosh2 (kx)
o5, T)= sin(Acosh(ke))  t2* . 2% 2 .
2 I (a+1) (1 L2 \Ak? cos(Acosh(kx))cosh(kx ) (1 2 \cos(Acosh(o))sincosh(kx) |T* (c+1)
N / N /

24

t4oz

24
This solution is convergent to the Adomian’s decomposition method solution [27,28].
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6. CONCLUSION

In this research, we present new applications of the fractional complex transform method with coupling reduced differential
transform method (RDTM) by handling three nonlinear physical fractional dynamical models. This coupling is an alternative
approach to overcome the demerit of complex calculation of fractional differential equations. The proposed technique, which does
not require linearization, discretization or perturbation, gives the solution in the form of convergent power series with elegantly
computed components. All the examples show that the proposed combination is a powerful mathematical tool to solving other
nonlinear equations.
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