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Abstract: In this paper, the use of finite Gaussian mixture modal (GMM) based Expectation Maximization (EM) estimated algorithms for score 
level data fusion is proposed. Automated biometric systems for human identification measure a “signature” of the human body, compare the 
resulting characteristic to a database, and render an application dependent decision. These biometric systems for personal authentication and 
identification are based upon physiological or behavioral features which are typically distinctive, Multi-biometric systems, which consolidate 
information from multiple biometric sources, are gaining popularity because they are able to overcome limitations such as non-universality, 
noisy sensor data, large intra-user variations and susceptibility to spoof attacks that are commonly encountered in mono modal biometric 
systems. Simulation show that finite mixture modal (GMM) is quite effective in modelling the genuine and impostor score densities, fusion based 
the resulting density estimates achieves a significant performance on  eNTERFACE 2005 multi-biometric  database based on dynamic face, 
signature and speech modalities. 
Keywords: Biometry, Multi-Modal, Authentication, Face Recognition, Speaker and Signature Verification, data Fusion, Adaptive 
Bayesian decision, GMM& EM 
 
1. INTRODUCTION 
BIOMETRIC is a Greek composite word stemming from the synthesis of bio and metric, meaning life measurement. In this context, 
the science of biometrics is concerned with the accurate measurement of unique biological characteristics of an individual in order to 
securely identify them to a computer or other electronic system. Biological characteristics measured usually include fingerprints, 
voice patterns, retinal and iris scans, face patterns, and even the chemical composition of an individual's DNA [1]. Biometrics 
authentication (BA) (Am I whom I claim I am?) involves confirming or denying a person's claimed identity based on his/her 
physiological or behavioral characteristics [3]. BA is becoming an important alternative to traditional authentication methods such 
as keys (“something one has", i.e., by possession) or PIN numbers (“something one knows", i.e., by knowledge) because it is 
essentially “who one is", i.e., by biometric information. Therefore, it is not susceptible to misplacement or forgetfulness [4]. These 
biometric systems for personal authentication and identification are based upon physiological or behavioral features which are 
typically distinctive, although time varying, such as fingerprints, hand geometry, face, voice, lip movement, gait, and iris patterns. 
Multi-biometric systems, which consolidate information from multiple biometric sources, are gaining popularity because they are 
able to overcome limitations such as non-universality, noisy sensor data, large intra-user variations and susceptibility to spoof attacks 
that are commonly encountered in mono-biometric systems. Some works based on multi-modal biometric identity verification 
systems has been reported in literature. Ben-Yacoub et al. [15] evaluated five binary classifiers on combinations of face and voice 
modalities (XM2VTS database). They found that (i) a support vector machine and bayesian classifier achieved almost the same 
performances; and (ii) both outperformed Fisher’s linear discriminent, a C4.5 decision tree, and a multilayer perceptron. Korves et 
al.[16] compared various parametric techniques on the BSSR1 dataset. That study showed that the Best Linear technique performed 
consistently well, in sharp contrast to many alternative parametric techniques, including simple sum of z-scores, Fisher’s linear 
discriminant analysis, and an implementation of sum of probabilities based on a normal (Gaussian) assumption. Jain et al. [20] 
propose a framework for optimal combination of match scores that is based on the likelihood ratio test. The distributions of genuine 
and impostor match scores are modeled as finite Gaussian mixture model. The proposed fusion approach is general in its ability to 
handle (i) discrete values in biometric match score distributions, (ii) arbitrary scales and distributions of match scores, (iii) correlation 
between the scores of multiple matchers and (iv) sample quality of multiple biometric sources. The performance of complete 
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likelihood ratio based fusion rule was evaluated on the three partitions of the NIST-BSSR1 database and the XM2VTS-Benchmark 
database. As expected, likelihood ratio based fusion leads to significant improvement in the performance compared to the best single 
modality on all the four databases. At a false accept rate (FAR) of 0:01%.  Jain et al.[17] applied the sum of scores, max-score, and 
min-score fusion methods to normalized scores of face, fingerprint and hand geometry biometrics (database of 100 users, based on 
a fixed TAR). The normalized scores were obtained by using one of the following techniques: simple distance-to-similarity 
transformation with no change in scale (STrans), min–max, z-score, median-MAD, double sigmoid, tanh, and Parzen. They found 
that (a) the min–max, z-score, and tanh normalization schemes followed by a simple sum of scores outperformed other methods; 
(b) tanh is better than min-max and z-score when densities are unknown; and (c) optimizing the weighting of each biometric on a 
user-by-user basis outperforms generic weightings of biometrics. Kittler et al. [23] proposed a multi-modal person verification 
system, using three experts: frontal face, face profile, and voice. The best combination results are obtained for a simple sum rule.  
Snelick et al.[18] compared combinations of z-score, min-max, tanh and adaptive (two-quadrics, logistic and quadric-line-quadric) 
normalization methods and simple sum, min score, max score, matcher weighting, and user weighting fusion methods (database of 
about 1000 users, at a fixed FAR). They found that (a) fusing COTS fingerprint and face biometrics does outperform mono-modal 
COTS systems, but the high performance of mono-modal COTS systems limits the magnitude of the performance gain; (b) for open-
population applications (e.g., airports) with unknown posterior densities, min-max normalization and simple-sum fusion are 
effective; (c) for closed-population applications (e.g. an office), where repeated user samples and their statistics can be accumulated, 
QLQ adaptive normalization and user weighting fusion methods are effective. Teoh et al. [19] Applied a modified k-NN and evidence 
theoretic k-NN classifier based on Dampster-safer theory, and it found that the best result is obtained using the evidence theoretic 
k-NN classifier as it introduces low FAR and FRR compared to both the ordinary and modified k-NN. Youssef Elmir et al. [31] present 
a hierarchical strategy fusion based on multimodal biometric system. The strategy presented relies on a combination of several 
biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion 
with optimal feature selection and a post-classification fusion that is based on the similarity of the maximum of matching scores. 
Mandeep Kaur et al. [32] discusses about Multimodal Biometric System such as signature and speech modalities which are used to 
overcome some of the problems of uni-modal systems like noise in sensed data, intra-class variations, distinctiveness, and spoof 
attacks. 
A multi-modal biometric verification system based on facial, signature and vocal modalities is described in this paper. Both face 
images and speech biometrics are chosen due to their complementary characteristics, physiology, and behavior. In multimodal 
systems, complementary input modalities provide the system with non-redundant information whereas redundant input modalities 
allow increasing both the accuracy of the fused information by reducing overall uncertainty and the reliability of the system in case 
of noisy information from a single modality. Information in one modality may be used to disambiguate information in the other ones. 
The enhancement of precision and reliability is the potential result of integrating modalities and/or measurements sensed by 
multiple sensors [5]. 
2. AUTHENTICATION TRAITS 
2.1. Face Extraction and Recognition 
Face recognition, authentication and identification are often confused. Face recognition is a general topic that includes both face 
identification and face authentication (also called verification). On one hand, face authentication is concerned with validating a 
claimed identity based on the image of a face, and either accepting or rejecting the identity claim (one-to-one matching). On the 
other hand, the goal of face identification is to identify a person based on the image of a face. This face image has to be compared 
with all the registered persons (one-to-many matching). Thus, the key issue in face recognition is to extract the meaningful features 
that characterize a human face. Hence there are two major tasks for that: Face detection and face verification.  
2.1.1. Face detection: Face detection is concerned with finding whether or not there are any faces in a given image (usually in gray 
scale) and, if present, return the image location and content of each face. This is the first step of any fully automatic system that 
analyzes the information contained in faces (e.g., identity, gender, expression, age, race and pose). While earlier work dealt mainly 
with upright frontal faces, several systems have been developed that are able to detect faces fairly accurately with in-plane or out-
of-plane rotations in real time. For biometric systems that use faces as non-intrusive input modules, it is imperative to locate faces 
in a scene before any recognition algorithm can be applied. An intelligent vision based user interface should be able to tell the 
attention focus of the user (i.e., where the user is looking at) in order to respond accordingly. To detect facial features accurately for 
applications such as digital cosmetics, faces need to be located and registered first to facilitate further processing. It is evident that 
face detection plays an important and critical role for the success of any face processing systems. 
On the results presented on this paper only size normalization of the extracted faces was used. All face images were resized to 
130x150 pixels, applying a bi-cubic interpolation. After this stage, it is also developed a position correction algorithm based on 
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detecting the eyes into the face and applying a rotation and resize to align the eyes of all pictures in the same coordinates. The face 
detection and segmentation tasks presented in this paper was performed based on ‘Face analysis in Polar Frequency Domain’ 
proposed by Yossi Z. et al. [11]. First it extract the Fourier-Bessel (FB) coefficients from the images. Next, it compute the Cartesian 
distance between all the Fourier-Bessel transformation (FBT) representations and re-define each object by its distance to all other 
objects. Images were transformed by a FBT up to the 30thBessel order and 6throot with angular resolution of 3˚, thus obtaining to 372 
coefficients. These coefficients correspond to a frequency range of up to 30 and 3 cycles/image of angular and radial frequency, 
respectively. Figure 1. Shows the face and eyes detections for different users from the database, and figure 2. Shows the face 
normalization for the same users.  

 
 

 
Figure 1.  Face & Eyes Detections for different users. 

 
 

 
Figure 2. Face Normalization for the above users. 

Polar Frequency Analysis: The FB series is useful to describe the radial and angular components in images [11]. FBT analysis starts 
by converting the coordinates of a region of interest from Cartesian (x, y) to polar (r, θ). The f (r, θ) function is represented by the two-
dimensional FB series, defined as: 

𝑓𝑓(𝑟𝑟, 𝜃𝜃) = ∑ ∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐽𝐽𝑛𝑛�𝛼𝛼𝑛𝑛,𝑖𝑖𝑟𝑟� cos(𝑛𝑛𝑛𝑛)∞
𝑛𝑛=1 + ∑ ∑ 𝐵𝐵𝑛𝑛,𝑖𝑖𝐽𝐽𝑛𝑛�𝛼𝛼𝑛𝑛,𝑖𝑖𝑟𝑟� sin(𝑛𝑛𝑛𝑛)∞

𝑛𝑛=1
∞
𝑖𝑖=1

∞
𝑖𝑖=1               (1) 

Where Jn is the Bessel function of order n, f(R, θ) = 0 and 0 ≤ r ≤ R.  αn,i  is the ith root of the Jn function, i.e. the zero crossing value 
satisfying Jn(αn,i) = 0 is the radial distance to the edge of the image. The orthogonal coefficients An,i  and Bn,I  are given by: 

  𝐴𝐴0,𝑖𝑖 = 1
𝜋𝜋𝑅𝑅2𝐽𝐽12�𝛼𝛼𝑛𝑛,𝑖𝑖�

∫ ∫ 𝑓𝑓(𝑟𝑟,𝜃𝜃)𝑟𝑟𝐽𝐽𝑛𝑛�
𝛼𝛼𝑛𝑛,𝑖𝑖
𝑅𝑅 𝑟𝑟� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑟𝑟=𝑅𝑅

𝑟𝑟=0
𝜃𝜃=2𝜋𝜋
𝜃𝜃=0                                    (2) 

if  𝐵𝐵0,𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 = 0; 

 �
𝐴𝐴𝑛𝑛,𝑖𝑖
𝐵𝐵𝑛𝑛,𝑖𝑖

� = 2
𝜋𝜋𝑅𝑅2𝐽𝐽𝑛𝑛+1

2 �𝛼𝛼𝑛𝑛,𝑖𝑖�
∫ ∫ 𝑓𝑓(𝑟𝑟, 𝜃𝜃)𝑟𝑟𝐽𝐽𝑛𝑛�

𝛼𝛼𝑛𝑛,𝑖𝑖
𝑅𝑅 𝑟𝑟�

𝑟𝑟=𝑅𝑅
𝑟𝑟=0

𝜃𝜃=2𝜋𝜋
𝜃𝜃=0 �cos(𝑛𝑛𝑛𝑛)

sin(𝑛𝑛𝑛𝑛)� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑                                 (3) 

if n> 0.  
An alternative method to polar frequency analysis is to represent images by polar Fourier transform descriptors. The polar Fourier 
transform is a well known mathematical operation where, after converting the image coordinates from Cartesian to polar, as 
described above; a conventional Fourier transformation is applied. These descriptors are directly related to radial and angular 
components, but are not identical to the coefficients extracted by the FBT. 
2.1.2. Face Verification: 
Feature Extraction: The so-called “eigenfaces” method [10] is one of the most popular methods for face recognition. It is based on 
the Principal Components Analysis (PCA) of the face images in a training set. The main idea is that since all human faces share certain 
common characteristics, pixels in a set of face images will be highly correlated. The K-L (Karhunen-Loeve) transform can be used to 
project face images to a different vector space that is of reduced dimensionality where features will be uncorrelated. In the new space 



ISSN: 1584-2673 [CD-ROM]; ISSN: 1584-2673 [online] 

142 | Fascicule 4 

nearest neighbor classifiers can be used for classification. Euclidean distances d in the projection space are mapped into the [0,1] 
interval of the real line using the mapping function: f = d / (1+d). It is easily seen that f is also a metric with distance values in [0,1]. 
Thus, the decomposition of a face image into an eigenface space provides a set of features. The maximum number of features is 
restricted to the number of images used to compute the KL transform, although usually only the more relevant features are selected, 
removing the ones associated with the smallest eigenvalues. Two different approaches, database training stage and the operational 
stage [10]. The concept verification system is illustrated in figure 4. 
The training stage: Face spaces are eigenvectors of the covariance matrix corresponding to the original face images, and since they 
are face-like in appearance, they are so are called Eigenfaces. 
Consider the training set of face images be  𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚;  the average face of the set is defined as: 
      𝑖𝑖 =  1

𝑀𝑀
∑ 𝑖𝑖𝑗𝑗𝑀𝑀
𝑗𝑗=1           (4) 

where M is the total number of images. 
Each face differs from the average by the vector ∅𝑛𝑛 =  𝑖𝑖𝑛𝑛 − 𝑖𝑖. A covariance matrix is constructed where: 

𝐶𝐶 =  ∑ ∅𝑗𝑗∅𝑗𝑗𝑇𝑇 = 𝐴𝐴𝐴𝐴𝑇𝑇𝑀𝑀
𝑗𝑗=1                           (5) 

where 𝐴𝐴 =  [∅1  ∅2 …∅𝑀𝑀]. 
Then, the eigenvectors 𝑣𝑣𝑘𝑘and the eigenvalues 𝜆𝜆𝑘𝑘with a symmetric matrix C are calculated. 𝑣𝑣𝑘𝑘Determines the linear combination 
of M difference images with  to form the Eigen faces: 

 𝑢𝑢𝑙𝑙 =  ∑ 𝑣𝑣𝑙𝑙𝑙𝑙∅𝑘𝑘𝑙𝑙 = 1, … ,𝑀𝑀𝑀𝑀
𝑘𝑘=1                                (6) 

From these Eigen faces, 𝐾𝐾(< 𝑀𝑀)  Eigenfaces are selected corresponding to the 𝐾𝐾highest eigenvalues. 
At the training stage, a set of normalized face images, {i}, that best describe the distribution of the raining facial images in a lower 
dimensional subspace (Eigen face) is computed by the following operation: 

     𝜔𝜔𝑘𝑘   =  𝑢𝑢𝑘𝑘�𝑖𝑖𝑛𝑛 − 𝑖𝑖�              (7) 
where 𝑛𝑛 =  1, … ,𝑀𝑀 and  𝑘𝑘 =  1, … ,𝐾𝐾. 
After that, the training facial images are projected onto the Eigen space,  𝜴𝜴𝒊𝒊, to generate representations of the facial images in 
Eigen face: 

     𝜴𝜴𝑖𝑖 =  (𝜔𝜔𝑛𝑛1,𝜔𝜔𝑛𝑛2, … ,𝜔𝜔𝑛𝑛𝑛𝑛)         (8)  
where 𝑛𝑛 =  1, 2, … ,𝑀𝑀. 
The operational stage: This approach is based on the 
same principles as standard PCA, explained in the training 
stage. The difference is that an eigenface space is extracted 
for each user. Thus, when a claimant wants to verify its 
identity, its vectorized face image is projected exclusively 
into the claimed user eigenface space and the 
corresponding likelihood is computed. The advantage of 
this approach is that it allows a more accurate model of the 
user’s most relevant information, where the first eigenfaces 
are directly the most representative user’s face 
information. Another interesting point of this method is its 
scalability in terms of the number of users. Adding a new 
user or new pictures of an already registered user only requires to compute or recompute the specific eigenface space, but not the 
whole dataset base as in the standard approach. For verification systems, the computation of the claimant’s likelihood to be a specific 
user is independent on the number of users in the dataset. On the contrary, for identification systems, the number of operations 
increases in a proportional way with the number of users, because as many projections as different users are required. In the 
verification system described in 
this article, the independent 
user Eigen face approach has 
been chosen. Each user’s Eigen 
face space was computed 
which 16 frames extracted from 
the database still faces. 

 
Figure 3.  Simplified version of the face space illustrating the four 

results of the projection of an image onto the face space. In this case 
there are two Eigen faces, u1 and u2 [10]. 

 
Figure 4.  Face Verification Concept System 
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2.2. Voice Analysis and Feature Extraction 
Gaussian Mixture Models (GMMs), is the main tool used in text-independent speaker verification, in which can be trained using the 
Expectation Maximization (EM) algorithm [8][12]. In this work the speech modality, is authenticated with a multi-lingual text-
independent speaker verification system. The speech trait is comprised of two main components as shown in figure 5: speech feature 
extraction and a Gaussian Mixture Model (GMM) classifier. The speech signal is analyzed on a frame by frame basis, with a typical 
frame length of 20 ms and a frame advance of 10 ms [14]. For each frame, a dimensional feature vector is extracted, the discrete 
Fourier spectrum is obtained via a fast Fourier transform from which magnitude squared spectrum is computed and put it through a 
bank of filters. The critical band warping is done following an approximation to the Mel-frequency scale which is linear up to 1000 
Hz and logarithmic above 1000 Hz. The Mel-scale cepstral coefficients are computed from the outputs of the filter bank [7].  The state 
of the art speech feature extraction schemes (Mel 
frequecy cepstral coefficients (MFCC) is based on 
auditory processing on the spectrum of speech signal 
and cepstral representation of the resulting features 
[2]. One of the powerful properties of cepstrum is the 
fact that any periodicities, or repeated patterns, in a 
spectrum will be mapped to one or two specific 
components in the cepstrum. If a spectrum contains 
several harmonic series, they will be separated in a 
way similar to the way the spectrum separates 
repetitive time patterns in the waveform. The 
description of the different steps to exhibit features 
characteristics of an audio sample with MFCC is 
showed in figure 6. 
The distribution of feature vectors for each person is 
modeled by a GMM. The parameters of the Gaussian mixture probability density function are estimated with Expectation 
Maximization (EM) algorithm [8]. Given a claim for person C’s identity and a set of feature vectors  𝑋𝑋 = {𝑥⃗𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁𝑁𝑁  supporting the 
claim, the average log likelihood of the claimant being the true claimant is calculated using: 

ℒ(𝑋𝑋|𝜆𝜆𝐶𝐶) = 1
𝑁𝑁𝑉𝑉
∑ log𝑁𝑁𝑉𝑉
𝑖𝑖=1  𝑝𝑝(𝑥⃗𝑥𝑖𝑖|𝜆𝜆𝐶𝐶)    (9) 

where                                                                                       𝑝𝑝(𝑥⃗𝑥|𝜆𝜆) = ∑ 𝑚𝑚𝑗𝑗
𝑁𝑁𝑀𝑀
𝑗𝑗=1 𝒩𝒩�𝑥⃗𝑥 ; 𝜇𝜇𝚥𝚥���⃗ ;⅀𝑗𝑗�                                                   (10) 

and                                                                                                      𝜆𝜆 = �𝑚𝑚𝑗𝑗  , 𝜇𝜇𝚥𝚥���⃗  ,⅀𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑀𝑀                         (11) 

Here 𝜆𝜆𝐶𝐶  is the model for person C.  𝑁𝑁𝑀𝑀 is the number of mixtures, 𝑚𝑚𝑗𝑗  is the weight for mixture j (with constraint ∑ 𝑚𝑚𝑗𝑗 = 1𝑁𝑁𝑀𝑀
𝑗𝑗=1  

), and    𝒩𝒩(𝑥⃗𝑥 ;  𝜇⃗𝜇 ,⅀)  is a multi-variate Gaussian function with mean 𝜇𝜇  and diagonal covariance matrix ⅀.  Given a set {𝜆𝜆𝑏𝑏}𝑏𝑏=1𝐵𝐵   
of  B background person models for person  C, the average log likelihood of the claimant being an impostor is found using: 

ℒ�𝑋𝑋�𝜆𝜆𝐶𝐶� =  log �1
𝐵𝐵
∑ expℒ(𝑋𝑋|𝜆𝜆𝑏𝑏)𝐵𝐵
𝑏𝑏=1 �                                               (12) 

The set of background person models is found using the method described in [9]. An opinion on the claim is found using: 
𝑜𝑜 =  ℒ(𝑋𝑋|𝜆𝜆𝐶𝐶) − ℒ�𝑋𝑋�𝜆𝜆𝐶𝐶�                                                 (13) 

The opinion reflects the likelihood that a given claimant is the true claimant (i.e., a low opinion suggests that the claimant is an 
impostor, while a high opinion suggests that the claimant is the true claimant). 
2.3. Signature Verification Systems 
Handwritten signature is one of the first accepted civilian and forensic biometric identification technique in our society [28][29][30]. 
Human verification is normally very accurate in identifying genuine signatures. A signature verification system must be able to detect 
forgeries and at the same time reduce rejection of genuine signatures. The signature verification problem can be classified into 
categories: offline and online. Offline signature verification does not use dynamic information that is used extensively in online 
signature verification systems. This paper investigates the problem of offline signature verification. The problem of offline signature 
verification has been faced by taking into account three different types of forgeries: random forgeries, produced without knowing 
either the name of the signer or the shape of his signature; simple forgeries, produced knowing the name of the signer but without 
having an example of his signature; and skilled forgeries, produced by people who, looking at an original instance of the signature, 
attempt to imitate it as closely as possible.  

 
Figure 5. Acoustic Speech Analysis 

 
Figure 6. MFCC calculation Block diagram [7] 
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Feature Extraction: The coordinate trajectories (xn, yn) and pressure signal 𝑝𝑝𝑛𝑛  are the components of the unprocessed feature 
vectors 𝑢𝑢𝑛𝑛 = [𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛 ,𝑝𝑝𝑛𝑛]𝑇𝑇  extracted from the signature signal 
[28][29][30], where n =1,...,Ns and  Ns is the duration of the signature in time 
samples. Signature trajectories are then pre-processed by subtracting the centre 
of mass followed by rotation alignment based on the average path tangent 
angle. An extended set of discrete-time functions are derived from the pre-
processed trajectories consisting of sample estimations of various dynamic 
properties. As s result, the parameterised signature O consists in the sequence of 
feature vectors 𝑜𝑜𝑛𝑛 = [𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛 ,𝑝𝑝𝑛𝑛 , 𝜃𝜃𝑛𝑛 , 𝑣𝑣𝑛𝑛, 𝑥̇𝑥𝑛𝑛  , 𝑦̇𝑦𝑛𝑛]𝑇𝑇 , n =1,...,Ns, 
where the upper dot notation represents an approximation to the first order time 
derivative and 𝜽𝜽 𝒂𝒂𝒂𝒂𝒂𝒂 𝒗𝒗 stand respectively for path tangent angle, path 
velocity magnitude. 

                                 𝑣𝑣𝑖𝑖 = �𝑥̇𝑥𝑖𝑖2 +  𝑦̇𝑦𝑖𝑖2    and    𝜃𝜃𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦̇𝑦𝑖𝑖 , 𝑥̇𝑥𝑖𝑖)                                                              (14) 

and                                                                              𝑥̇𝑥𝑖𝑖 =  𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖−1   𝑎𝑎𝑎𝑎𝑎𝑎  𝑦̇𝑦𝑖𝑖 =  𝑦𝑦𝑖𝑖 −  𝑦𝑦𝑖𝑖−1                                                                        (15) 
A whitening linear transformation is finally applied to each discrete-time function so as to obtain zero mean and unit standard 
deviation function values. Seven dimensional feature vectors are used for GMM processing described in the following section. Figure 
9 shows x-, y-, p- and velocity signals of an example signature. 

 
Figure 9. Signals (x-, y- position, pen pressure and velocity)  

of one signature fragment. 
 

3. MULTIMODAL BIOMETRIC FUSION DECISION 
The process of biometric user authentication can be outlined by the following steps [25]:  a) acquisition of raw data,  b) extraction of 
features from these raw data,  c) computing a score for the similarity or dissimilarity between these features and a previously given 
set of reference features and  d) classification with respect to the score, using a threshold. The results of the decision processing steps 
are true or false (or accept/reject) for verification purposes or the user identity for identification scenarios. 
The fusion of different signals can be performed 1) at the raw data or the feature level, 2) at the score level or 3) at the decision level. 
These different approaches have advantages and disadvantages. For raw data or feature level fusion, the basis data have to be 
compatible for all modalities and a common matching algorithm (processing step c) must be used. If these conditions are met, the 
separate feature vectors of the modalities easily could be concatenated into a single new vector. This level of fusion has the advantage 
that only one algorithm for further processing steps is necessary instead of one for each modality. Another advantage of fusing at 
this early stage of processing is that no information is lost by previous processing steps. The main disadvantage is the demand of 
compatibility of the different raw data of features. The fusion at score level is performed by computing a similarity or dissimilarity 
(distance) score for each single modality. For joining of these different scores, normalization should be done. The straightforward 
and most rigid approach for fusion is the decision level. Here, each biometric modality results in its own decision; in case of a 
verification scenario this is a set of trues and falses. From this set a kind of voting (majority decision) or a logical AND or OR decision 
can be computed. This level of fusion is the least powerful, due to the absence of much information. On the other hand, the advantage 
of this fusion strategy is the easiness and the guaranteed availability of all single modality decision results. In practice, score level 
fusion is the best-researched approach, which appears to result in better improvements of recognition accuracy as compared to the 
other strategies. 

 
Figure 7. Wacom Graphire3 digitizing Tablet PC  

 
Figure 8. Azimuth and inclination angles of the 

pen respect to the plane of the graphic card  
GD-0405U from Wacom Graphire3 digitizing 

Tablet PC. 
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3.1 Adaptive Bayesian Method Based Score Fusion 
Let  𝑋𝑋 = [𝑋𝑋1 ,𝑋𝑋2 , … ,𝑋𝑋𝐾𝐾] denote the match 
scores of K different biometric matchers, where Xk is the 
random variable representing the match score of the kth 

matcher, 𝑘𝑘 =  1, 2, … ,𝐾𝐾. Let 𝑓𝑓gen(𝑥𝑥) and 
𝑓𝑓imp(𝑥𝑥) be the conditional joint densities of the K 
match scores given the genuine and impostor classes, 
respectively, where 𝑥𝑥 =  [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥K]. Suppose 
we need to assign the observed match score vector X to 
genuine or impostor class. Let Ѱ  be a statistical test for 
testing H0: X corresponds to an impostor against H1: X 
corresponds to a genuine user. Let Ѱ (x) = i imply that 
we decide in favor of Hi, i = 0, 1. The probability of 
rejecting H0 when H0 is true is known as the false accept 
rate (size or level of the test). The probability of correctly 
rejecting H0 when H1 is true is known as the genuine 
accept rate. The Neyman-Pearson theorem [21][22] 
states that:  

1) For testing H0 against H1, there exists a test Ѱ and a constant ŋ such that: 
           𝑃𝑃(Ѱ(𝑋𝑋) = 1|𝐻𝐻0) = ∝                                                                                     (16) 

 Ѱ(𝑥𝑥) = �
1,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥)

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)≥ŋ

0,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥)
𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)≥ŋ

                                                                                 (17) 

2) If a test satisfies equations (16) and (17) for some ŋ, then it is the most powerful test for testing H0 against H1 at level ∝. 
According to the Neyman-Pearson theorem, given the false accept rate (FAR) ∝, the optimal test for deciding whether a score vector 
X corresponds to a genuine user or an impostor is the likelihood ratio test given by equation (17). For a fixed FAR, it can select a 
threshold ŋ  such that the likelihood ratio test maximizes the genuine accept rate (GAR). Based on the Neyman-Pearson theorem, we 
are guaranteed that there does not exist any other decision rule with a higher GAR. However, this optimality of the likelihood ratio test 
is guaranteed only when the underlying densities are known. In practice, it estimate the densities fgen(x) and fimp(x) from the training 
set of genuine and impostor match scores, respectively and the performance of likelihood ratio test will depend on the accuracy of 
these estimates [13][25]. 
3.1.1 Estimation of Match Score Densities: Gaussian mixture model (GMM) has been successfully used to estimate arbitrary 
densities and it is used for estimating the genuine and impostor score densities [8][24]. 
Let  𝛷𝛷𝐾𝐾(𝑥𝑥;  𝜇𝜇,⅀)  be the K-variate Gaussian density with mean vector μand covariance matrix ⅀, i.e.,  
𝛷𝛷𝐾𝐾(𝑥𝑥;  𝜇𝜇,⅀)  =  (2𝜋𝜋)−𝐾𝐾/2|⅀|−1/2 𝑒𝑒𝑒𝑒𝑒𝑒�−1

2(𝑥𝑥 − 𝜇𝜇)𝑇𝑇⅀−1(𝑥𝑥 − 𝜇𝜇)�.  The estimates of fgen(x) and fimp(x) are 
obtained as a mixture of Gaussians as follows. 

𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥) =  ∑ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗𝛷𝛷𝐾𝐾�𝑥𝑥;  𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗  ,⅀𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗�
𝑀𝑀𝑔𝑔𝑔𝑔𝑔𝑔
𝑗𝑗=1             (18) 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝛷𝛷𝐾𝐾�𝑥𝑥;  𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗  ,⅀𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗�
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗=1              (19) 

where Mgen (Mimp) is the number of mixture components used to model the density of the genuine (impostor) scores,    

𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗  (𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗)    is the weight assigned to the  jth mixture component in    𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) �𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)� ,∑ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗
𝑀𝑀𝑔𝑔𝑔𝑔𝑔𝑔
𝑗𝑗=1 =

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗=1 = 1. Selecting the appropriate number of components is one of the most challenging issues in mixture density 

estimation; while a mixture with too many components may result in over-fitting, a mixture with too few components may not 
approximate the true density well. The GMM fitting algorithm automatically estimates the number of components and the 
component parameters using an EM algorithms and the minimum message length criterion [8][24]. 
Maximum Likelihood Parameter Estimation: Given a set of observation data in a matrix X and a set of observation parameters 
𝜃𝜃 the ML parameter estimation aims at maximizing the likelihood 𝐿𝐿(𝜃𝜃)or log likelihood of the observation data  𝑋𝑋 =
 {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} 

𝜃𝜃� =  𝑎𝑎𝑎𝑎𝑎𝑎 max
𝜃𝜃

𝐿𝐿(𝜃𝜃).               (20)  

 
Figure 10. Score Fusion Based Multimodal Biometric Verification System 
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Assuming that it has independent, identically distributed data, it can write the above equations as: 
𝐿𝐿(𝜃𝜃) = 𝑝𝑝(𝑋𝑋|𝜃𝜃) = 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛|𝜃𝜃) = ∏ 𝑝𝑝(𝑋𝑋𝑖𝑖|𝜃𝜃)𝑛𝑛

𝑖𝑖=1 .                                             (21) 
The maximum for this function can be find by taking the derivative and set it equal to zero, assuming an analytical function.  

𝜕𝜕 
𝜕𝜕𝜕𝜕
𝐿𝐿(𝜃𝜃) = 0.        (22)  

The incomplete-data log-likelihood of the data for the mixture model is given by: 
𝐿𝐿(𝜃𝜃) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋|𝜃𝜃) = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖|𝜃𝜃)𝑁𝑁

𝑖𝑖=1                        (23)  
which is difficult to optimize because it contains the log of the sum. If it considers X as incomplete, however, and posits the existence 
of unobserved data items 𝑌𝑌 = {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 whose values inform us which component densitygenerated each data item, the likelihood 
expression is significantly simplified. That is, it assume that 𝑦𝑦𝑖𝑖 ∈ {1 . .𝐾𝐾} for each i, and 𝑦𝑦𝑖𝑖  =  𝑘𝑘if the i-th sample was generated 
by the k-th mixture component. If it knows the values of Y, it obtains the complete-data log-likelihood, given by: 

    𝐿𝐿(𝜃𝜃,𝑌𝑌) = log𝑝𝑝(𝑋𝑋,𝑌𝑌|𝜃𝜃)                                                                                 (24) 
      = ∑ log 𝑝𝑝(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖|𝜃𝜃)𝑁𝑁

𝑖𝑖=1                           (25) 
     = ∑ log�𝑝𝑝(𝑦𝑦𝑖𝑖|𝜃𝜃)𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 , 𝜃𝜃)�𝑁𝑁

𝑖𝑖=1                                    (26) 
=  ∑ �log 𝑝𝑝𝑦𝑦𝑖𝑖 + log𝑔𝑔�𝑥𝑥𝑖𝑖�𝜇𝜇𝑦𝑦𝑖𝑖 ,∑𝑦𝑦𝑖𝑖��

𝑁𝑁
𝑖𝑖=1                                       (27) 

which, given a particular form of the component densities, can be optimized using a variety of techniques [23]. 
EM Algorithm: The expectation-maximization (EM) algorithm [24][25][26][27] is a procedure for maximum-likelihood (ML) 
estimation in the cases where a closed form expression for the optimal parameters is hard to obtain. This iterative algorithm 
guarantees the monotonic increase in the likelihood L when the algorithm is run on the same training database.  
The probability density of the Gaussian mixture of k components in Ʀ𝑑𝑑  can be described as follows: 

𝛷𝛷(𝑥𝑥) = ∑ 𝜋𝜋𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∅(𝑥𝑥|𝜃𝜃𝑖𝑖)      ∀𝑥𝑥 ∈  Ʀ𝑑𝑑  ,                               (28) 

where  ∅(𝑥𝑥|𝜃𝜃𝑖𝑖) is a Gaussian probability density with the parameters  𝜃𝜃𝑖𝑖 =  (𝑚𝑚𝑖𝑖 ,∑𝑖𝑖), 𝑚𝑚𝑖𝑖  is the mean vector and ∑𝑖𝑖  is the 
covariance matrix which is assumed positive definite given by: 

∅(𝑥𝑥|𝜃𝜃𝑖𝑖) = ∅(𝑥𝑥|𝑚𝑚𝑖𝑖 ,∑𝑖𝑖) = 1

(2𝜋𝜋)
𝑛𝑛
2|∑𝑖𝑖|

1
2

 𝑒𝑒− 12(𝑥𝑥−𝑚𝑚𝑖𝑖)𝑇𝑇 ∑ (𝑥𝑥−𝑚𝑚𝑖𝑖)−1
𝑖𝑖

 
 ,                    (29) 

and  𝜋𝜋𝑖𝑖  ∈  [0, 1](𝑖𝑖 = 1,2, … ,𝑘𝑘)  are the mixing proportions under the constraint  ∑ 𝜋𝜋𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1.  If it encapsulate all the 

parameters into one vector: 𝛩𝛩𝑘𝑘 = (𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑘𝑘,𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑘𝑘), then , according to Eq. (27), the density of Gaussian 
mixture can be rewritten as: 

𝛷𝛷(𝑥𝑥|𝛩𝛩𝑘𝑘) = ∑ 𝜋𝜋𝑖𝑖∅(𝑥𝑥|𝜃𝜃𝑖𝑖)𝑘𝑘
𝑖𝑖=1 = ∑ 𝜋𝜋𝑖𝑖∅(𝑥𝑥|𝑚𝑚𝑖𝑖 ,∑𝑖𝑖)𝑘𝑘

𝑖𝑖=1 .                                           (30) 
For the Gaussian mixture modeling, there are many learning algorithms. But the EM algorithm may be the most well-known one. By 
alternatively implementing the E-step to estimate the probability distribution of the unobservable random variable and the M-step 
to increase the log-likelihood function, the EM algorithm can finally lead to a local maximum of the log-likelihood function of the 
model. For the Gaussian mixture model, given a sample data set 𝑆𝑆 =  {𝑥𝑥1, 𝑥𝑥2,· · · , 𝑥𝑥𝑁𝑁}as a special incomplete data set, the 
log-likelihood function can be expressed as follows: 

    log 𝑝𝑝(𝑆𝑆|𝛩𝛩𝑘𝑘) = log∏ ∅(𝑥𝑥𝑡𝑡|𝛩𝛩𝑘𝑘)𝑁𝑁
𝑡𝑡=1 = ∑ log∑ 𝜋𝜋𝑖𝑖∅(𝑥𝑥𝑡𝑡|𝜃𝜃𝑖𝑖),𝑘𝑘

𝑖𝑖=1
𝑁𝑁
𝑡𝑡=1                                  (31) 

Which can be optimized iteratively via the EM algorithm as follows: 

𝑃𝑃(𝑗𝑗|𝑥𝑥𝑡𝑡) =  
𝜋𝜋𝑗𝑗∅�𝑥𝑥𝑡𝑡�𝜃𝜃𝑗𝑗�

∑ 𝜋𝜋𝑖𝑖∅�𝑥𝑥𝑡𝑡�𝜃𝜃𝑖𝑖�𝑘𝑘
𝑖𝑖=1

,                                     (32) 

            𝜋𝜋𝑗𝑗+ = 1
𝑁𝑁
∑ 𝑃𝑃(𝑗𝑗|𝑥𝑥𝑡𝑡),𝑁𝑁
𝑡𝑡=1                        (33) 

                   𝜇𝜇𝑗𝑗+ = 1
∑ 𝑃𝑃�𝑗𝑗�𝑥𝑥𝑡𝑡�𝑁𝑁
𝑡𝑡=1

∑ 𝑃𝑃(𝑗𝑗|𝑥𝑥𝑡𝑡)𝑥𝑥𝑡𝑡 ,𝑁𝑁
𝑡𝑡=1                           (34) 

∑𝑗𝑗
+ =  1

∑ 𝑃𝑃�𝑗𝑗�𝑥𝑥𝑡𝑡�𝑁𝑁
𝑡𝑡=1

∑ 𝑃𝑃(𝑗𝑗|𝑥𝑥𝑡𝑡)�𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑗𝑗+��𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑗𝑗+�
𝑇𝑇𝑁𝑁

𝑡𝑡=1 .        (35) 

Although the EM algorithm can have some good convergence properties in certain situations, it certainly has no ability to determine 
the proper number of the components for a sample data set because it is based on the maximization of the likelihood. 
4. EXPERIMENTS AND RESULTS 
The experiments were performed using still faces, signatures and audio database extracted from video, which is encoded in raw 
UYVY. AVI 640 x 480, 15.00 fps with uncompressed 16bit PCM audio; mono, 32000 Hz little endian. Uncompressed PNG files are 
extracted from the video files for feeding the face detection algorithms. The capturing devices for recording the video and audio data 
were: Allied Vision Technologies AVT marlin MF-046C 10 bit ADC, 1/2” (8mm) Progressive scan SONY IT CCD; and Shure SM58 
microphone. Frequency response 50 Hz to 15000 Hz. Unidirectional (Cardiod) dynamic vocal microphones. Thirty subjects were used 
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for the experiments in which twenty-six are males and four are females. For each subject, 30 signatures (with dat header) are used. 
Each line of a (.dat files) consists of four comma separated integer values for the sampled x- and y-position of the pen tip, the pen 
pressure and the timestamp (in ms); the lines with values of -1 for x, y and pressure represent a pen-up/pen-down event; The device 
used for recording the handwriting data was a Wacom Graphire3 digitizing tablet. Size of sensing surface is 127.6mm x 92.8mm. 
With spatial resolution of 2032 lpi (lines per inch), able to measure 512 degrees of pressure. The signature data is acquired with a 
non-fixed sampling rate of about 100Hz. The audio is extracted as 16 bit PCM WAV file (with wav header), sampled at 16000 Hz, 
mono little endian. For the audio six multi-lingual (.wav files) of one minute each recording were used for each subject. The database 
obtained from eNTERFACE 2005 [6]. Thirty subjects were used for the experiments in which twenty-five are males and five are 
females. For face experts, ninety-six face images from a subject were randomly selected to be trained and projected into Eigen space, 
and the other twenty-four samples were used for the subsequent validation and testing. Similarly, four samples were used in speech 
experts for the modeling (training); two samples were used for the subsequent validation and testing. For signature experts, twenty 
four signatures from a subject were randomly selected for training, and the other six samples were used for the subsequent validation 
and testing. Three sessions of the face database, signature and speech database were used separately. Session one was used for 
training the speech and face experts. Each expert used ten mixture client models. To find the performance, Sessions two and three 
were used for obtaining expert opinions of known impostor and true claims.  
Performance Criteria: The basic error measure of a verification system is false rejection rate (FRR) and false acceptance rate (FAR) 
as defined in the following equations: 
False Rejection Rate (FRRi): is an average of number of falsely rejected transactions. If n is a transaction and x(n) is the verification 
result where 1 is falsely rejected and 0 is accepted and N is the total number of transactions then the personal False Rejection Rate 
for user i is  

∑
=

=
N

n
i nx

N
FRR

1

)(1
                           (36) 

False Acceptance rate (FARi) is an average of number of falsely accepted transactions. If n is a transaction and x(n) is the 
verification result where 1 is a falsely accepted transaction and 0 is genuinely accepted transaction and N is the total number of 
transactions then the personal False Acceptance Rate for user i is 

∑
=

=
N

n
i nx

N
FAR

1

)(1
       (37) 

Both FRRi and FARi are usually calculated as averages over an entire population in a test. If P is the size of populations then these 
averages are   

∑=
P

i
iFRR

P
FRR 1      (38) 

∑=
P

i
iFAR

P
FAR 1

     (39) 

Equal Error Rate (EER), is an intersection where FAR and FRR are equal at an optimal threshold value. This threshold value shows 
where the system performs at its best. 

  
Figure 11. Detection error tradeoff curves: 

 Signature (GMM-EM) 
Figure 12. Detection error tradeoff curves: Face (GMM-EM) 

As a common starting point, classifier parameters were selected to obtain performance as close as possible to EER on clean test data 
(following the standard practice in the face and speaker verification area of using EER as a measure of expected performance). A good 
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decision is to choose the decision threshold such as the false accept equal to the false reject rate. In this paper it uses the Detection 
Error Tradeoff (DET) curve to visualize and compare the performance of the system (see Figures 11-17). 

  
Figure 13. Detection error tradeoff curves: Voice (GMM-EM) Figure 14. Detection error tradeoff curves: Voice-Signature 

(GMM-EM) 

  
Figure 15. Detection error tradeoff curves:  

Voice-Face (GMM-EM) 
Figure 16. Detection error tradeoff curves: Face-Signature 

(GMM-EM) 

 
Figure 17. Detection error tradeoff curves: Voice-Face-Signature (GMM-EM) 

5. CONCLUSIONS  
The paper has presented a human authentication method combined face, signature and speech information in order to improve the 
problem of single biometric authentication, since single biometric authentication has the fundamental problems of high FAR and 
FRR. It has presented a framework for fusion of match scores in multi-modal biometric system based on adaptive Bayesian method. 
The likelihood ratio based fusion rule with GMM-based density estimation achieves a significant recognition rates. As a result 
presented a combined authentication method can provide a stable authentication rate and it overcomes the limitation of a single 
mode system. Based on the experimental results, it has shown that EER can be reduced down significantly between the face, 
signature mode and a combined face-voice-signature mode. 
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