ANNALS of Faculty Engineering Hunedoara — International Journal of Engineering

Tome XIII [2015] — Fascicule 4 [November] ISSN: 1584-2673 [CD-Rom; online]

a free-access multidisciplinary publication of the Faculty of Engineering Hunedoara

^{1.} Miriama PIŇOSOVÁ, ^{2.} Beata HRICOVÁ, ^{3.} Ružena KRÁLIKOVÁ

COMPREHENSIVE EVALUATION OF THE QUALITY OF THE WORKING ENVIRONMENT

1-3. Technical University of Košice, Faculty of Mechanical Engineering, Institute of Design Machine and Process Engineering, Department of Process and Environmental Engineering, Park Komenského 5, 042 00 Košice, SLOVAKIA

Abstract: This contribution is devoted to the experimental proposal of the methodology for a comprehensive assessment of the working environment quality. The evaluation was based on a basic assumption that the human organism during its work on different jobs affects various risk factors. We assume an ideal working environment with optimal or "zero" values of operating factors. Before determining the appropriate method of evaluation is appropriate to combine qualitative and quantitative assessment, creating a system for evaluating the parameters of the working environment that reflects: the nature of the impact parameters of the working environment, duration of effect, simultaneously operating range of risk factors and magnitude of the impact of individual parameters of the working environment. The evaluation process in this case, enters workplace factors: noise, vibration, lighting, dust, electromagnetic fields, radiant heat and ergonomics, stress and safety factors. The most important step is the selection and evaluation that will be based on an evaluation of information and also interviewed people from expert's evaluation. The experiment was focused on four basic physical factors (noise, vibration, dust and lighting) working environment, which are among the most risky in terms of assessing the health of employees and duration of exposure in the workplace during their work shift.

Keywords: working environment quality, human organism, risk factors, operating factors, evaluation

1. INTRODUCTION

Risk assessment is the process of qualitative and quantitative risk assessment for occupational health and safety of workers. The more negative factors applied to the working environment, the greater the negative effects on the human organism. In assessing the working environment are used various methods and procedures designed to assess the possibility of harm. Therefore it is necessary to choose a suitable complex multi-criteria method, which, according to obtained information could determine the size of load of a man within the working environment. Selection criteria for assessment are not simple, because there are many indicators that characterize the working environment load. Before the assessment method is determined, it is appropriate to combine qualitative and quantitative assessment, thereby establishing a system for measurement of working environment, taking into account: the nature of the impacts of the working environment parameters, duration of the impact, the range of risk factors operating simultaneously, and the magnitude of the impact of individual parameters of the working environment.

With the mathematical formulation can be reached the target state, which is the idea of a display of the objective complete working environment quality in the spatial coordinates that define the different views, approaches and needs of the specification of the working environment parameters. In the designing of an experimental methodology of a comprehensive assessment of the quality of working environment we will build on the condition that the worker is affected during his work at different job positions by various risk factors. These factors vary by their intensity and duration on which depends their influence on human organism. To quantify these effects is difficult because [7]:

- Each parameter in the working environment requires a different approach in analysing its effect on humans,
- ≡ Each parameter has a wide range of effects,
- = The impact of individual risk factors varies with time and change of working activity,
- The perception of the effects of the working environment is significantly an individual matter.

It is important to determine also whether the environment will be evaluated by one criterion or we have more criteria available. In our case we propose to deal with the evaluation of multiple criteria simultaneously. We propose the following evaluation procedure:

- Selection of the methods of the working environment quality assessment,
- Selection and measurement of the risk factors,
- \equiv Determining the weights of criteria (Saaty method and calculation by the software SANNA),

- Normalisation of the measured values,
- Calculation of the total load,
- Risk assessment (determination of the risk acceptability).

1.1. Selection of the Methods of the Working Environment Quality Assessment

Methods of decision making in general, present the summary of rules and procedures, using which we can come to choosing the best solution. The current situation offers us a wide range of methods of decision making. If we use a distribution based on mutual relation of empiricism and theory contained in the individual methods, it is possible to divide them into three groups of empirical, heuristic and exact methods. [2]

In solving practical problems such as the comprehensive assessment of the working environment quality is appropriate to use one of the following methods of multi-criteria decision making. Specific methods, which can be used by a comprehensive assessment, can be as follows: point method of assessment, proportion index method, Decision Matrix Method – DMM, Forced Decision Matrix Method – FDMM, Analytic Hierarchy Process – AHP, method of quantitative comparison – Fuller method, ranking method, etc.

The specified methods of multi-criteria decision making vary mainly according to how they determine so called weight of individual criterion. The comprehensive assessment of working environment quality to determine the weights of the criteria we use one of the exact methods and the analytical multilevel evaluation method AHP, which provides a framework for effective decisions in complex decision making situations, it helps simplify and accelerate the natural process of decision making process. [1, 3]

1.2. Selection and Measurement of the Risk Factors

By the comprehensive assessment of the working environment is evaluated the interaction of all risk factors. In this case enter the process the workplace factors: noise, vibration, lighting, air purity, or dust, electromagnetic fields, ergonomics, radiant heat, physical stress, hygienic factors and safety factors. The most important step is the selection and evaluation will be based on an evaluation of information of interviewed people and also from expert opinions. The next step of a comprehensive evaluation is the measurement of risk factors. The results should then be processed to evaluate and draw conclusions from them.

1.3. Determining the Weights of Criteria

The AHP method provides a comprehensive and coherent approach to structuring the problem to quantify the elements that relate to the overall objectives and for evaluating the alternative solutions. Before the application of the method, the valuation entity must define any criteria on the basis of which the evaluation will be conducted. [5]

This method is based on pairwise comparisons of the degree of significance of individual criteria. The evaluation is based on so called expert estimation, by which the experts in the field can compare the mutual effect of two factors. These evaluate on the basis of the scale [equal - weak - moderate - strong — very strong], and to this wording evaluation correspondents following values [1 - 3 - 5 - 7 - 9]. [6, 11, 12]

The pairwise comparison the two criteria are placed in the opposite ends of the line against each other and compared, which is more important. In the middle of the line is number 1, which means that the compared criteria are equally important. Along the line are the numbers 1 to 9, where the number 9 means that the criterion on the relevant end was more important than at the other end criterion. In this case, the form for the evaluation are indicated two options (strong and very strong predominance of factor B over factor A), and as the resulting assessment will appear in the line of the factor B and the column of the factor A the value "1/4", and in the line of the factor A and the column of the factor B will be indicated the inverse value i.e. the value "4". If n is the total number of elements, which are compared, then the number of comparisons is [5, 13, 14]

$$n(n-1)/2$$
.

Further procedure for determining the weights of criteria is more complicated than other methods because it is necessary:

- = For each pairwise comparison matrix to determine a normalised self-vector corresponding the maximum real self-worth (number) matrix, as considered in an absolute value,
- = Its components which accordingly determine the weights of criteria and the resulting evaluation can be reached the same way as the weighted sum of the determined evaluations multiplied by the weights of criteria.

2. GENERAL PROCEDURE OF SOLUTION

I. Realisation of the pairwise comparison of the criteria and comparison of the scenarios according to the individual criteria — gaining the matrices.

II. Determination of self-worth (self-number) of each matrix

A. Obtaining the characteristic polynomial

- a) Solve the matrix determinant form $(A_i \lambda J) = 0$
- b) Use the Fadejev method

- c) Use the available software (Matlab, Mathematica etc.)
- B. Determination of the roots of the characteristic polynomial and get their self-number, for which is valid $\max |\lambda_i| = SN$
 - a) Procedures for dealing with such polynomials for example Bairstow method
 - b) To use the available software (Matlab, Mathematica etc.)

III. Obtaining the values of the self-vector matrix

A. Determined self-number of matrix introduced into the system in the form $(A-\lambda_{-}J).x=0$

B. We obtain a homogeneous system n — equations (with zero right sides). The solution of it we obtain values so called self-vector.

- Use the method of LAR system solution, for example Gauss elimination method, LU decomposition, Gauss -Jordan method etc.
- b) Use the available software (Matlab, Mathematica etc.)

IV. The transformation of self-vector matrix to the normalised self-vector, which components determine the weights of individual criteria and weights of variations according to how they fulfil the requirements of individual criteria.

V. The final evaluation and ranking by the weighted sums. [6] In the Table 2 are shown the weights of criteria determined by Saaty's method of evaluation.

Table 2. Saaty's method of weight criteria estimation

1

 $1/s_{12}$

...

 $1/s_{1k}$

Table 1. The pairwise comparison of the criteria

S₁₂

1

 $1/s_{2k}$

 f_k

 S_{1k}

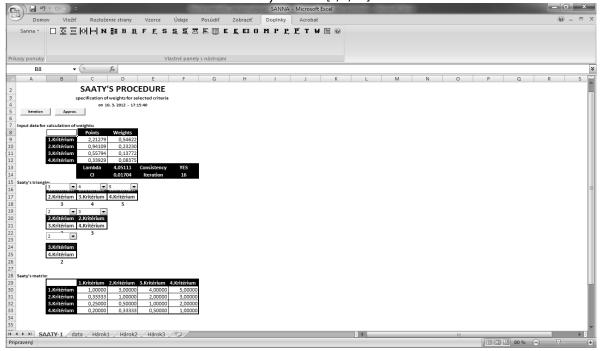
 S_{2k}

1

•••

...

s(i,j)	Criteria				R(i)	Weight	
Criteria	F1	F2	F3	F4	П a(i,j)	[Π a(i,j)] ^{1/4}	v(i)
F1	1	3	4	5	60	1	0.5462
F2	1/3	1	2	3	2	0.4253	0.2323
F3	1/4	1/2	1	2	1/4	0.2521	0.1377
F4	1/5	1/3	1/2	1	1/30	0.1533	0.0837
Total						1.8307	1.0000


2.1. Application of the Software SANNA

Calculation of the vector of weights from the paired comparison

matrix is usually part of the special programs implemented by AHP method. The calculation is also possible to realise in Excel with the utilisation of so called Wielandt theorem. This mathematical theorem states that for a vector of weights reciprocal pairwise comparisons matrix is valid:

$$\lim_{r\to\infty}\frac{S^r.e}{e^T.S^r.e}=c.v$$

The relation states that the vector formed by sums of row elements r-squared matrix S divided by the sum of all elements of this matrix is close enough for sufficiently large r of the self-vector of the matrix S corresponding to the largest self-number. In individual interact will be calculated the relation (Sr.e)/ (eT.Sr.e) pre $r = 1, 2, 4, 8 \dots$ and it is followed how the calculated vectors differ in two consecutive interacts. We can achieve the sufficient accuracy at r = 16. [4, 8, 15]

Figure 1. SANNA: Saaty's calculation weight criteria

Such mathematical calculation is used also by the software SANNA (Fig. 1) — System for Analysis of Alternatives. The application utilises five methods of assessment (TOPSIS, WSA, ELECTRE I, PROMETHEE II and MAPPAC) and enables to determine the weights by three methods (Point method, Fuller's method and Saaty's procedure) and to solve multi-criteria problems by seven methods (TOPSIS, WSA, ELECTRE II, PROMETHEE II, ORESTE and MAPPAC). With SANNA it is possible to solve up to 100 variations and 50 criteria. [9]

2.2. Normalisation of the Measured Values Within the Interval <0, 1>

The calculation of the measured values for indicators in the interval <0, 1> can be performed on the relation

$$F_{ij} = 1 - \frac{L_H - L_A}{L_H - L_D}$$

where: F_{ij} — normalised value of the basic indicator j from the class of the factor i, L_H — upper limit value of the factor, L_D — lower limit value of the factor, L_A — actual (measured) value of the factor. [7]

Noise (F1):
$$F_{ij} = 1 - \frac{80 - 60}{80 - 40} = 0.5$$

Dust (F2): $F_{ij} = 1 - \frac{100 - 54}{100 - 0} = 0.54$
Lighting (F3): $F_{ij} = 1 - \frac{700 - 620}{700 - 500} = 0.6$
Vibration (F4): $F_{ij} = 1 - \frac{5 - 1.3}{5 - 2.5} = 0.48$

2.3. Calculation of the Total Load

Interpretation of the final coefficient calculation evaluating the level of the working environment at a workplace or in a group of workplaces is based on Table 3 and Figure 2. Manual calculation is appropriate to process according to the procedure set in Table 3.

Table 3. Procedure of calculation of the factor values of the working environment at n-workplace or valid for n-worker

Table 51 To codate of calculation of the factor fallacs of the Working Chilliannian act in Worker										
Factors of the	Normalised	Workplaces								
working environment	weight of a vector	•	1	Ž	2		j	 1	ı	
Factor 1	V ₁	F ₁₁	ζ ₁₁	F ₁₂	ζ ₁₂	F_{1j}	ζ_{1j}	F_{1n}	ζ_{1n}	Evaluation of each
Factor 2	V ₂	F ₂₁	ζ ₂₁	F ₂₂	ζ ₂₂	F_{2j}	ζ_{2j}	F_{2n}	ζ_{2n}	factor at all
Factor i	Vi	F _{i1}	ζ_{i1}	F _{i2}	ζ_{i2}	F _{ij}	ζ_{ij}	F_{in}	ζ_{in}	workplaces
Factor m	V _m	F _{m1}	ζ_{m1}	F _{m2}	ζ_{m2}	F_{mj}	$\zeta_{ m mj}$	F_{mn}	ζ_{mn}	
Evaluation of all parameters according to workplaces			ζ1		ζ2		ζ_i		ζ_n	$\zeta_p = \frac{\sum_{j=1}^n \zeta_j}{n}$

Real load of the working environment by the safety factors we can express in following relation $\zeta_{ii} = v_i \cdot F_{ii}$

where: ζ – real load by the safety factors, v_i – normalised value of the vector weight, F_{ij} – measured normalised value of the safety factors.

The average value of the load by individual indicators ζ_p , which is the indicator of the average load of the whole working environment we can state as follows

$$\zeta_p = \frac{\sum_{j=1}^n \zeta_j}{n}$$

where: ζ_i – are the elements of the column vector.

Overall load of the working environment is then given by $\zeta = \sum_{j=1}^{n} \zeta_{j}$. Actual work-loading are given in Table 4.

Table 4. Actual loading of the working environment (1 workstation or 1 worker)

Table 10 recall roading of the Working children (1 Workstation of 1 Worker)						
Factor	Normalised value	Normalised value of the weight vector	Actual load			
F1 (noise)	0.5	0.5462	0.2731			
F2 (dust)	0.54	0.2323	0.12544			
F3 (lighting)	0.6	0.1377	0.08262			
F4 (vibration)	0.48	0.0837	0.04017			
	0.5213					

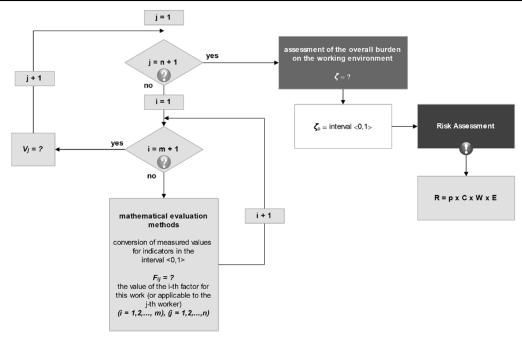


Figure 2. Procedure of the calculation of the working environment factor values at the n-workplace

2.4. Risk Assessment

If the risk (R) is the probability of formation and at the same time the severity of consequences or adverse event, we state that the risk is the function of two basic parameters: probability (p) and consequence (C). Mathematically expressed: $R = p \times C$. And the symbol x expresses the type of function according to the type of evaluation (it can be a matrix or conjunction). In our opinion, a straightforward risk assessment process in five steps is suitable: Step 1: Identifying hazards and persons at risk, Step 2: Risk assessment and prioritizing, Step 3: Deciding on preventive measurements, Step 4: Taking action, Step 5: Monitoring and control. Choice of approach to the assessment will depend on the nature of the workplace (e.g. stable or temporary operation), the type of process (e.g. repetitive activities, developing / changing processes, work on the contract), the task being performed (e.g. repetitive, occasional or high risk) and technical complexity. [10, 17]

Criteria of system safety evaluation and risk assessment are not firm. As accepted risk is considered the risk which the persons in concern taking into account all operational and human conditions will be willing to bear. In our case, the risk assessment method was selected the point method. Compared to the classical definition of risk is by the assessment of the risk level utilized the expanded definition of the risk in the following form:

R (risk) = p (probability) x C (consequence) x W (effect of the safety and health at work) x E (period of exposition) where: p - probability we determine on the basis of the Gauss function of the density of the probability normal distribution and overall load of the working environment adapted for our case study.

and:
$$p = 5 - \frac{1}{0,1\sqrt{2\pi}} e^{\frac{-\left(\zeta - 0,5\right)^2}{2.0,1^2}} \text{ then: } R = 5 - \frac{1}{0,1\sqrt{2\pi}} e^{\frac{-\left(\zeta - 0,5\right)^2}{2.0,1^2}} \times C \times W \times E$$

Table 5. Determination of the resulting risk

Table 27 Determination of the resulting list							
Risk	Risk category	Point spread	Safety assessment	Measures	Example of a detailed description		
Irrelevant, insignificant risk	l.	1 – 20	System is safe	it is not necessary to take measures	no injury, minor financial loss		
Acceptable risk	II.	21 – 50	System is provided with safe service training	possibility for improvement, corrective plan	first aid, medium financial loss		
Adverse risk	III.	51 – 250	Risk cannot be accepted without safeguards	safety measures is needed	necessary medical treatment, high financial loss		
Significant risk	IV.	251 – 500	System is unsafe, the possibility of injury	should take immediate safety measures	extensive injury, large financial loss		
Unacceptable risk	V	501 – 625	System is unacceptable, the threat of permanent injury	system shutdown	death, huge financial loss		

Risk – final indicator, which is the product of the four values of risk parameters. The lowest value can be 1 and the highest 625 (Table 5). The score range is classified into five risk categories according to the points: Insignificant, Negligible risk; acceptable, Less significant risk; Adverse risk; Significant risk and Unacceptable risk.

$$R = 5 - \frac{1}{0.1\sqrt{2\pi}} e^{-\frac{(9-0.5)^2}{2.0.1^2}} \times D \times V \times E = 5 - \frac{1}{0.1\sqrt{2\pi}} e^{-\frac{(0.5213-0.5)^2}{2.0.1^2}} \times 1 \times 3 \times 4 = 13,201$$

Considering the subjective evaluation and selection of point values in the evaluation of risk parameters is not so important endpoints risk value for individual hazards, such as identification of specific hazards, threats to the professional as a threat to a lower point value of risk may cause injury more often than the risk of higher value.

3. CONCLUSION

Comprehensive evaluation of the environmental quality is a new innovative approach for assessing the effects on humans. It should be noted that this issue is complicated and therefore there are many approaches to its solution. The methodology presented in this paper describes the authors' idea about how to resolve this issue. The presented results are based on past experience in the field of measurement and evaluation of environmental factors, the authors actually perform.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0432-12. The paper was prepared with financial support from Grant Agency KEGA 039TUKE-4/2015.

References

- [1.] Hnilica R. Development of framework for assessment of combined effects of risk factors. In: Acta Facultatis Technicae. XVI. 2011 (2): 31-37
- Zimmermann H.J. Multi-Criteria Decision Making Methods: A Comparative Study. 2000 5-53

- [3.] Lumnitzer, E., Badida, M., Romanová, M. Hodnotenie kvality prostredia. 2007 25-68
 [4.] Máca, J., Leitner, B. Operačná analýza I. Deterministické metódy operačnej analýzy. 2. vydanie. 2002 45-58
 [5.] Mašátová, J. Výběr vhodného softwaru z pohledu vícekriteriálního rozhodování. Vysoká škola ekonomická v Praze. Fakulta informatiky a statistiky 2011
- [6.] Ramík, J. Vícekriteriální rozhodování Analytický hierarchický proces (AHP), Karviná: Slezská univerzita, 1999.
 [7.] Ramík, J. Analytický hierarchický proces (AHP) a jeho možnosti uplatnění při hodnocení a podpoře rozhodování. Sborník příspěvků z konference Matematika v ekonomice. Vydaní: První. Jihlava 2010.
 [8.] Roháčová, I., Marková, Z. 2009: The Analysis of AHP method and its potential use in logistics. Acta Montanistica Slovaca. Ročník 14. 2009. (1) 103-112
 [9.] Bernard, H.R. Social Research Methods. Qualitative and Quantitative Approaches.417-613
 [10.] Covello, V.T., Miley W.M. Risk Assessment Methods. Approaches for Assessing Health and Environmental Risks
 [11.] Forman F.H. Opprations Pocoarch. The Applytic Hierarchy Process. Vol. 40 No. 4 2001 460 486

- [11.] Forman E.H. Operations Research. The Analytic Hierarchy Process. Vol. 49 No. 4 2001 469-486
 [12.] Drake, P.R. Using the Analytic Hierarchy Process in Engineering Education. Int. J. Engng. Ed. Vol. 14, No.3, p.191—196. 1998
 [13.] Kurttila, M., Pesonen, M., Kangas, J., Kajanus, M., Utilizing AHP in SWOT analysis: a hybrid method and its application. Forest Policy and Economics 1: 41—52. 2000
- [14.] Millet, I., Wedley, W.C., Modelling Risk and Uncertainty with the Analytic Hierarchy Process. Journal of Multi—Criteria Decision Analysis, 11: 97—107. 2002
- [15.] Vargas, L.G., An overview of the analytic hierarchy process and its applications. European Journal of Operational Research, 48: 2—8. 1990
- [16.] Xinpei J. The Coupled Method Fuzzy-AHP Applys to Solve Multi-criteria Decision Making Problems WSEAS Transactions on Mathematics Volume 8, 657-666 2009
- [17.] Robson, M., Toscano, W. Risk Assessment for Environmental Health 1-611. 2007

ANNALS of Faculty Engineering Hunedoara — International Journal of Engineering

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, 5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA http://annals.fih.upt.ro