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ABSTACT: This paper is dealing with procedures for mathematical modeling of DVA. Usually the problems 
of optimization are converted to equivalent single degree of freedom (SDOF) structure at particular mode in 
order to optimize the damper. There are three main parameters in a DVA system: DVA mass, DVA stiffness 
coefficient and DVA damping ratio. Consequently, the objective is to find the optimum value of these 
parameters. This paper is investigating also the effect of relative speed of primary structure and its influence 
on response. 
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1. INTRODUCTION 
In engineering applications, many systems can be modeled as single degree-of-freedom systems [1]. 
For example, a machine mounted on a structure can be modeled using a mass-spring-damper 
system, in which the machine is considered to be rigid with mass m and the supporting structure 
is equivalent to a spring k and a damper c, as shown in Figure 1. The machine is subjected to a 
sinusoidal force F0sinΩt, which can be an externally applied load or due to imbalance in the 
machine. 

  
Figure 1. A machine mounted on a structure Figure 2. Vibration absorber installed  

It is well known that when the excitation frequency Ω is close to the natural frequency of the system 
ω0 = �k/m, vibration of large amplitude occurs. In particular, when the system is undamped, i.e., 
c = 0, resonance occurs when Ω = ω0, in which the amplitude of the response grows linearly with 
time. 
To reduce the vibration of the system, a vibration absorber (DVA) or a tuned mass damper (TMD), 
which is an auxiliary mass-spring-damper system, is mounted on the main system [2,3] as shown 
in Figure 2. The mass, spring stiffness, and damping coefficient of the viscous damper are ma, ka 
and ca, respectively, where the subscript “а” stands for “auxiliary”. 
2. EQUATION OF MOTION AND DMF 
To derive the equation of motion of the main mass m, consider its free-body diagram as shown in 
Figure 2(b). Since mass m moves upward, spring k is extended and spring ka is compressed. 
Considering Figure 2(b) and Newton’s Second Law we get the following equitation’s: 
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 mẍ = ∑ F: mẍ = −kx − cẋ − ka(x − xa) − ca(ẋ − ẋa) + F0sinΩt 1 
or 

 mẍ + (c + ca)ẋ + (k + ka)x − caẋa − kaxa = F0sinΩt 2 
Similarly, consider the free-body diagram of mass ma. Since mass ma moves upward a distance xa(t), 
spring ka is extended. The net extension of spring ka is xa−x. Hence, the spring ka and damper ca 
exert downward forces ka(xa − x) and ca(ẋa − ẋ), respectively. Applying Newton’s Second Law 
gives: 

 maẍa = ∑ F: maẍa = −ka(xa − x) − ca(ẋa − ẋ) 3 
or 

 maẍa + caẋa + kaxa − caẋ − kax = 0 4 
The Dynamic Magnification Factor (DMF) for mass m is equal to: 

 DMF =
|xP(t)|max

xstatic
 5 

Adopting the following notations: 

 ω0
2 = k

m
, c = 2mζω0, r = Ω

ω0
 , µ = ma

m
, ωa

2 = ka
ma

 , ca = 2maζaω0 , ra = ωa
ω0

 6 

The Dynamic Magnification Factor becomes: 
DMF

= ��
(ra2 − r2)2 + (2ζar)2

[(1 − r2)(ra2 − r2) − µra2r2 − 4ζaζ r2 ]2 + 4r2[ζa(1 − r2 − µr2) + ζ (ra2 − r2)]2� 
7 

For the special case when µ = 0, ra = 0, ζa = 0, the Dynamic Magnification Factor reduces to: 

 DMF =
1

�(1 − r2)2 + (2ζr)2
 8 

which recovers the DMF of a single degree-of-freedom system, i.e., the main system without the 
auxiliary vibration absorber or TMD. 
The Dynamic Magnification Factors for an undamped main system, i.e., ζ = 0,are shown in Figure 
3. Without the vibration absorber or TMD, the single degree-of-freedom system is in resonance 
when r = 1 or Ω = ω0, where the amplitude of the response grows linearly with time or DMF 
approaches infinite. 

  
Figure 3. DMF for ζ = 0 Figure 4. DMF for ζ = 0.04 

In order to reduce the vibration of the main system at resonance, a vibration absorber or TMD is 
attached to the main mass m. The vibration absorber is usually tuned [4] so that ωа = ω0 or ra =
1, hence the name tuned mass damper. In practice, the mass of the vibration absorber or TMD is 
normally much smaller than that of the main mass, i.e., ma ≪ m or µ ≪ 1; in Figure 3 and 4, μ is 
taken as 1/20=0.05.  
If the vibration absorber or TMD is undamped, i.e., ζa = 0, then DMF=0 when Ω = ω0, meaning 
that the vibration absorber eliminates vibration of the main mass m at the resonant frequency Ω =
ω0. However, it is seen that the vibration absorber or TMD introduces two resonant frequencies Ω1 
and Ω2, at which the amplitude of vibration of the main mass m is infinite. In practice, the excitation 
frequency Ω must be kept away from the frequencies Ω1 and Ω2. 
In order not to introduce extra resonant frequencies, vibration absorbers or TMD are usually 
damped [4]. A typical result of DMF is shown in Figure 3 for ζa = 0.1. It is seen that the vibration 
of the main mass m is effectively suppressed for all excitation frequencies. By varying the value of 
ζa, an optimal vibration absorber can be designed. 
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When the main system is also damped, typical results of DMF are shown in Figure 4. Similar 
conclusions can also be drawn. 
3. MATHEMATICAL MODEL OF DYNAMIC VIBRATION ABSORBER WITH MATLAB & SIMULINK 
Governing equitation’s of motion for the system on Figure 2 can be written as: 

 mẍ + (c + ca)ẋ + (k + ka)x − caẋa − kaxa = F0sinΩt 9 
 maẍa + caẋa + kaxa − caẋ − kax = 0 10 

or in matrix for: 

 �m 0
0 ma

� � ẍ
ẍa
� + �(c + ca) −ca

−ca ca
� � ẋ

ẋa
� + �

(k + ka) −ka
−ka ka

� �
x

xa� = �10� F0sinΩt 11 

Hence 
 MẌ + CẊ + KX = I ∙ F0sinΩt 12 

In the following step equitation of motion is re-written in State Space system [5]: 
 Ẍ = [−M−1K]X + [−M−1C]Ẋ + [−M−1I] ∙ F0sinΩt 13 
 Ẋ = [0]X + [1]Ẋ + [0] ∙ F0sinΩt 14 

or in matrix form: 

 �Ẋ
Ẍ
� = � 0 1 0

0 1
−M−1K −M−1C

� �XẊ� + � 0
−M−1I� ∙ F0sinΩt 15 

Hence 
 Ẋ = A ∙ X + B ∙ u 16 

Second equitation of the system is: 
 X = C ∙ X + D ∙ u 17 

where 

 C = �
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

� and D = �
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� 18 

Above equitation’s conclude the final State-Space form: 
 Ẋ = A ∙ X + B ∙ u 19 
 X = C ∙ X + D ∙ u 20 

which is one way for solving the system of differential 
equitation’s by using the command State-Space 
system in Matlab Simulink. 
Figure 5 shows the structural scheme in Simulink. The 
second equitation with coefficients C and D is called 
equitation of output values. 
On the left side of Figure5 are given input values as 
column vectors (time of sampling and external force 
F0sinΩt). The initial conditions are also listed here as 
x and xa at t=0, as well as ẋ and ẋa at t = 0. For the 
studied case it is adopted initial values to be equal to 
zero. 
Another way of modeling the system in Matlab 
Simulink is with block diagrams using function ODE45 for solving differential equitation’s. For this 
purpose we need to re-write the governing equitation’s:  

 mẍ + (c + ca)ẋ + (k + ka)x − caẋa − kaxa = F0sinΩt 9 
 maẍa + caẋa + kaxa − caẋ − kax = 0 10 

in the following order: 

 ẍ =
F0
m

sinΩt +
ca
m

ẋa +
ka
m

xa −
(c + ca)

m
ẋ −

(k + ka)
m

x 21 

 ẍ = A sinΩt + B ẋa + C xa − D ẋ − E x 22 
and 

 ẍa =
ca
ma

ẋ +
ka
ma

x −
ca
ma

ẋa −
ka
ma

xa 23 

 ẍa = K ẋ + L x − M ẋa − N xa 24 
if adopted variables: 

 
Figure 5. State-Space model in Matlab 
Simulink for solving system of ODE’s 



ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

34 | Fascicule 1 

 ω0
2 = k

m
, c = 2mζω0, r = Ω

ω0
 , µ = ma

m
, ωa

2 = ka
ma

 , ca = 2maζaω0, ra = ωa
ω0

 25 
the coefficients A, B, C, D, E, K, L, M, N become: 

B = 2µζaω0, C = µωa
2, D = 2ω0(ζ + µζa), E = ω0

2 + µωa
2, K = M = 2ζaω0, L = N = ωa

2 26 
Following equitation’s: 

 ẍ = A sinΩt + B ẋa + C xa − D ẋ − E x 27 
 ẍa = K ẋ + L x − M ẋa − N xa 28 

we make the block scheme in Matlab Simulink 
shown on Figure 6. 

In this type of representation, initial conditions 
are given by clicking on each block in the 
scheme. The solutions obtained with block 

scheme representation and State-Space system must be identical. 
The analysis of the system on Figure 2, 5 and 6 is carried out with the values of the main parameters 
given in Table 1.  
With this input parameters we can calculate the governing equitation’s of motion for 10 sec. and 
sampling time of 0.01 s. The results of the response are shown on Figure 7 and 8. 

Table 2. Comparison of amplitudes 
Max. displace [m] 
without TMD for 

t=5s 

Max. displace [m] 
with TMD for t=5s 

0.3038 0.07892 
 

If we calculate the maximal value of the 
displacement at same time of the main (primary) 
mass for case with and without TMD it can be 
seen that displacements are larger in the case 
without the auxiliary mass. Comparison of 
amplitudes from Figure 7 and 8 is given in table 
2. It shows that TMD decreased the vibrations for 
74% of the value without TMD. 
Another important detail for review is the 
displacement of the auxiliary mass which can be 
seen on Figure 7. It is clear that the displacement 
is significantly larger than the response of the 
primary mass. In our case, the amplitude of the 

auxiliary mass is 0.4 compared with 0.07892 of the main mass. This is one of the problems with 
application of TMD. In order to do its function, it is necessary to be provided with large space for 
the auxiliary mass so it can oscillate without any obstacles. Considering that these devices are 
installed on top of the building roofs, this space is usually limited. 
Figure 9 represents the influence of the ratio µ (auxiliary mass/main mass). It is clear that 
increasing the auxiliary mass ma is widening the area of impaired oscillations, but as it is mentioned 
before, this is limited with the ration of less than 15%. Usually large masses lead to big unpractical 
structures. 
Figure 10 illustrates the weakening effect caused by shifting frequency ratio ra = ωa ω0⁄ ≠ 1 over 
size of the area of impaired oscillations. Figure 11 shows the DMF as function of the normalized 
frequency r and the damping ration of the auxiliary mass ζa. It is clear that with increasing the 
damping two major maximums intend to joint in one, which has much lower value. It is evident 
from the diagram that TMD has optimal value [6]. 
 
 

 
Figure 6. Block representation in Matlab 

Simulink for solving ODE’s 

Table 1. Selected values for main parameters 
m [kg] 200 ζa 0.1 
µ 0.05 c[N ∙ (s/m)] 502.4 

ma[kg] 10 k[N/m] 197192 
f[Hz] 5 c_a [N ∙ (s/m)] 62.8 

ω0[rad/s] 31.4 k_a [N/m] 9859.6 
ω_a [rad/s] 31.4 F0[N] 5000 

ζ 0.04 Ω [rad/s] 31 
 

 
Figure 7. Displacement of main mass with TMD 

 
Figure 8. Displacement of main mass without 

TMD 
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 .  
Figure 9. Influence of the mass ratio µ Figure 10. Influence of the ratio ra = ωa ω0⁄  

  
Figure 11. DMF as function of normalized freq. r and the damping ration ζa 

4. MODELING FORCE AS FUNCTION OF RELATIVE VELOCITY 
Wind force is dependent on wind velocity and also type of airflow. This is described with the 
equitation [7,8]: 

 F = CF ∙ A ∙ q 29 
where CF is coefficient of shape, A is building surface and q is wind pressure.  
Wind pressure is equal to: 

 q = 1
2
∙ ρ ∙ V2  30 

where ρ is air density and V is wind velocity. 
The CF is dimensionless number which depends on Reynolds number, and for normal wind 
velocities can be considered as constant. Therefore the equitation for wind force can be written as: 

 F = CF ∙ A ∙ q = CF ∙ A ∙ 1
2
∙ ρ ∙ V2 = CW ∙ V2  31 

where CW is wind constant. 
From the analysis in previous section Figure7 and 8, we can make following statement: 

 F = sgn(V) ∙ CW ∙ V2 = F0sinΩt 32 
Wind force is always in the direction of wind velocity and therefore: 

 sgn(V) = sgn(sinΩt) 33 
Hence, wind velocity and force for analyzed model can be calculated as: 

 V = sgn(sinΩt) ∙ �F0 
CW

∙ |sinΩt|  34 

 F = sgn(sinΩt) ∙ CW ∙ ��F0 
CW

∙ |sinΩt|�
2

  35 

Next analysis calculates differential equitation’s (ODE’s) with external wind force that will depend 
on the relative speed between wind and structure velocity [9, 10]: 

 F = sgn(V − ẋ) ∙ CW ∙ (V − ẋ)2 36 
the differential equitation’s will take shape: 

 ẍ =
A
F0

 sgn(V − ẋ) ∙ CW ∙ (V − ẋ)2 + B ẋa + C xa − D ẋ − E x 37 

 ẍa = K ẋ + L x − M ẋa − N xa 38 
For easier calculation we will adoptCW = 1. Next, we lower the order of ODE’s: 

 x1 = x,  x2 = ẋ,  x3 = xa, x4 = ẋa 39 
and A F0 = A′⁄  and we have: 

 ẋ1 = x2 40 

 ẋ2 = A′ sgn(V − x2) ∙ (V − x2)2 + B x4 + C x3 − D x2 − E x1 
41 
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 ẋ3 = x4 42 
 ẋ4 = K x2 + L x1 − M x4 − N x3 43 

Using ODE45 (an explicit Runge-Kutta method) in Matlab for solving non-stiff differential 
equations, we obtain solution for the system above. The results are presented graphically with 
Figure 12. 

  
Figure 12. Comparison between calculation with and without relative speed included 

The results show general trend for smaller amplitudes of 
displacement of the primary and secondary mass when 
relative speed is included (Table 3). 
5. CONCLUSION 
This paper is analyzing the mathematical approach for 
modeling dynamic vibration absorber with s.d.o.f. and 
m.d.o.f. mass. The paper presents the technique for 
modeling the differential equitation’s with state-space form 
and block diagrams using Matlab Simulink. 
Also, it shows how the relative speed affects the primary 
mass response under external excitation. It can be 
concluded that when the primary mass vibrates with 
frequency close to the natural frequency and it is without TMD the relative speed is causing smaller 
amplitudes of oscillations. 
If TMD is installed, the relative speed is not affecting the response of the primary mass and the 
difference between the amplitudes of oscillations is insignificant. 
If relative speed is included, the response of primary mass is smaller than the case without it. 
Note 
This paper is based on the paper presented at The 12th International Conference on Accomplishments in 
Electrical and Mechanical Engineering and Information Technology – DEMI 2015, organized by the 
University of Banja Luka, Faculty of Mechanical Engineering and Faculty of Electrical Engineering, in Banja 
Luka, BOSNIA & HERZEGOVINA (29th – 30th of May, 2015), referred here as[11]. 
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Table 3. Comparison of amplitudes 
Amplitude of primary mass  

for t=5s [m] 
without TMD 
(relative speed 

included) 

without TMD 
(relative speed 
not included) 

0.25 0.3038 
with TMD 

(relative speed 
included) 

with TMD 
(relative speed 
not included) 

0.07467 0.07929 
 


