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ABSTACT: Finding the spectral features of color sample sets is a main issue of colorimetry. It is widespread 
to apply Principal Component Analysis in these researches. Several studies were written about the 
reconstruction of samples with known spectra using principal components, and some works dealt with 
approximate reconstruction from tristimulus values. Our study examines how spectral reconstruction done 
with genetic optimization works in case of different illuminants. The authors have taken only the tristimulus 
values of the color samples given. Also, they examine the reconstruction in case of illuminants that have 
unknown spectral power distributions, then they give the solution for these cases in brief. 
Keywords: Spectral reconstruction, tristimulus values, principal component analysis, genetic optimization, 
illuminants 
 
1. INTRODUCTION 
It is a basic thesis of colorimetry that any color stimulus can unequivocally be given by three 
numbers. These numbers can be the CIE Z,Y,X  tristimulus values or the coordinates of any other 
suitable color space ( ****** v,u,L;b,a,L;y,x,Y etc.). However, the description of self-luminous objects 
(light sources) and surfaces (secondary light sources) is often given with spectral features, in other 
words with spectra. This type of description provides much more information about the observed 
object, it needs, therefore, more than three parameters. The researchers in colorimetry started 
examining how they can determine or give approximately the reflection spectra of surfaces with 
only a few numbers. Principal Component Analysis (PCA), which is based on elements of 
mathematical statistics and linear algebra, has appeared to be an especially strong and interesting 
tool. 
Several studies deal with the usage of Principal Component Analysis in colorimetry, therefore its 
mathematical presentation is not the subject of the present article. Publications [1]-[7] provide a 
general view how it works. In order to apply this method effectively, it is necessary to have a set 
with a large number of known spectra. Principal Component Analysis produces the eigenvectors 
belonging to the sample set. The linear combination of these eigenvectors helps to reconstruct the 
spectrum. The above mentioned studies present reconstruction of samples that have known and 
measured spectra. The question is whether it is possible to say anything about the spectrum of color 
samples that have unknown reflectance functions if we only know their tristimulus values Z,Y,X . In 
some of the studies focusing on this problem [8], [9], the spectral reconstruction is done with an 
algorithm using pseudo invers matrix operations. 
However, Principal Component Analysis or weighed Principal Component Analysis has been used 
in other studies. Corresponding to the tristimulus values, the three eigenvectors, whose eigenvalues 
are the greatest ones, are enough to get the same Z,Y,X values as the result of reconstruction [10], 
[11]. More accurate results can be reached with more components, but they lead to undetermined 
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equation systems, as the tristimulus values can be given in many ways from more than three 
components. Because of this critical statement, three vectors have been considered to be satisfactory 
in most cases.  
Publication [12] describes the authors’ method 
that deals with this problem. They used the first 
five eigenvectors instead of the first three vectors 
and the features of the reflection functions of 
real color samples for generic optimization. It 
was considered that the reflection functions of 
the real samples are smooth, without strong 
oscillation and they are non-negative. This 
method provides a much more accurate 
reconstruction than the earlier ones. (Figure 1) 
The set of 2 832 textile samples with known 
reflectance functions were used. Furthermore, 
148 flower samples, 565 paint samples and 8 533 human skin samples were applied. The 
formalism of optimization is to be shown in brief. More details can be read in publication [12]. 
2. THE FORMALISM OF OPTIMIZATION 
During calculation, the authors work with spectra (reflectance functions) whose resolution is 
given, therefore, finite-dimensional vectors are used instead of continuous functions. Let N  denote 
the dimension number of these vectors. For example, if a spectrum is with a range of 400 nm - 700 
nm and with an equidistant-wavelength step of at 10 nm, 31N = . 
The eigenvalues of the PCA method arranged in decreasing order are denoted by 0N21 ≥ττ≥τ  , 

the eigenvectors relating to the eigenvalues are denoted by N21 v,,v,v  , and the mean vector by

m . The linear combination of M  eigenvectors and the principal components M21 c,,c,c   
provides the following spectrum. 

 ( ) ∑ +⋅=
=

M

1i
iiM21 mvcc,,c,cf   (1) 

( )M21 c,,c,cf  is also an N -dimensional vector. 

Having M  fixed, variables M21 c,,c,c   determine the spectrum of the reconstructed f according 
to equation (1). As a next step, a function is to be created that measures the difference between this 
type of spectrum and the ideal spectrum. The difference is small for smooth and non-negative 
metamers, and it is greater and greater, if the tristimulus values deviate from the stipulated ones or 
if the function oscillates strongly or it takes up negative values. It is easy to calculate the tristimulus 
values of the spectrum by the application of color-matching functions. 
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In Eq. 2, iii z,y,x denote the discrete versions of the CIE color-matching functions which have the 

same resolution as that of the spectra, iS . is the discrete spectral power distribution of the 
illuminant. Obviously, the values of 

000 Z,Y,X  depend on the coefficients ic , but this dependenceis 
not emphasized for the sake of briefness. 
It is possible to calculate the squared sum of the differences to show how much the values 000 ,, ZYX  
deviate from the predefined values Z,Y,X  

 ( ) ( ) ( ) ( )2
0

2
0

2
0M210 ZZYYXXc,,c,cd −+−+−=                          (3) 

This 0d  value is non-negative and it is equal to 0 when a metamer complies with the definition. If

3M = , the equation system of the metamer has a single solution. A lot of earlier studies which used 
PCA ended with giving this solution. If 3M > , it has an infinite number of solutions, and the most 
realistic one can be chosen with the use of constraints on negativity and strong oscillation. 
It is possible to describe the negativity of the function bythe integral of the negative and the positive 
part, or with the ratio of their sums in the discrete case. Denote: 

 ( )0,fmaxf ii=
+ ; ( )0,fminf ii=

−  (4)- (5) 

 
Figure 1. Reconstruction with three and with five 

eigenvectors 
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Definitions (4) and (5) resemble the terms of lower and upper covering functions used in analysis. 
The penalty term on negativity is: 

 ( ) nn W
FF

F
P ⋅

+
=

−+

−

    (8) 

nW is the weight factor which is used to set the relative weight of this term within the optimization 
function. It is obvious that 0=nP  if the function has only non-negative values and 1=nW , and the 
more negative parts, f contains the greater positive values nP  has got. It is 1 in extreme cases. 
The oscillation of the function is defined by the squared sum of the deviation between the 
neighboring terms: 

 ( )∑
−

=
+ −=
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1i

2
i1i ffV  (9) 

The penalty term on oscillation is 

 
( ) vv W

1N

V
P ⋅

−
=  (10) 

The cost function whose minimum is assumed to determine the metamer with the best qualitative 
features is the following. 

 ( ) vn0M21 PPdc,,c,cd ++=  (11) 
It is possible to get 0d  from (3), nP from (8) and vP  from (10). The weights nW  and vW  show the 
importance of one or the other penalty terms. According to the pre-calculation we have already 
made, the useful values are 1W,100W 1n == . A little change in them will not influence the final result. 
All in all, d is a non-linear function with M variables, whose minimum corresponds to the best 
function for the researchers, in other words, vector ( )M21 c,,c,c   which gives the location of the 
extreme values, contains the optimal weight of the eigenvectors used in the reconstruction. 
In order to find the minimum point of function d , which has been given in equation (11) above, 
we use our own genetic optimization program. The genetic algorithm was chosen because d has a 
lot of local minima (mainly because of the oscillation term) and the gradient-based methods 
generally cannot find the global minimum in these cases.  
Our genetic algorithm uses the standard genetic operators, e.g. mutation and crossing, and in order 
to accelerate the search for local maxima, it uses hill-climbing steps. The authors had already 
applied this code to solve more industrial optimization problems [13]. 
Values describing the accuracy of the reconstruction 
It is possible to describe the accuracy of the reconstruction by several measuring numbers in a 
quantitative way. Also, it is possible to measure the color difference between the examined sample 
and the reconstructed sample, the spectral deviation and accuracy between the original and the 
reconstructed reflection function. 
The color difference can be given as it follows. As the first step, the tristimulus values Z,Y,X of the 
samples have to be transformed into values *** b,a,L (12), where nnn Z,Y,X  are the tristimulus values 
of the reference white tristimulus values under a given illuminant.  
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In case of all the used samples, the condition 
3

29
6

t 





> is met. The nnn Z,Y,X values of the reference 

white tristimulus under the illuminant with ( )λS spectral power distribution are given by equation 
(13). 
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The normalisation coefficient is denoted by ϕk and ( ) ( ) ( )λλλ ωωω z,y,x are the CIE color matching 

functions. The values of the comparable color samples are *
1

*
1

*
1 b,a,L , and *

2
*
2

*
2 b,a,L . Knowing these, 

the CIE Lab *
abE∆ color difference can be determined (15). 
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*
ab bbaaLLE −+−+−=∆  (15) 

If 0E*
ab =∆ , the test samples are the same. If 1* =∆ abE , it gives the just perceptible difference under a 

given illuminant. 
Two different values are given for the spectral accuracy by the publications. One of them is a 
numerical value, GFC  (goodness of fit coefficient) (16). 
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( )iλϕ denotes the sample reflection function at wavelength iλ . ( )ir λϕ  denotes the reconstructed 
spectrum at iλ . If 1GFC= , the reconstructed function is perfectly identical with the original one. 
Therefore, the closer GFC gets to 1, the more accurate the spectral reconstruction is. The formula 
in (16) corresponds to the cosine value of the angle of two abstract vectors. 
The other accuracy specifying value is RMS (root mean square), which gives the reconstruction 
error according to the differences between the original and the reconstructed spectra (17). 

 ( ) ( )( )∑
=

λϕ−λϕ⋅=
31

1i

2
iri31

1
RMS  (17) 

The notations in equation (17) are the same as the notations in equation (16). The smaller the value 
is, the smaller the spectral error is and the greater the reconstruction accuracy is. 
The illuminants used in the test 
The authors used only one well-known illuminant, the CIE E, i.e. the equienergetic illuminant in 
their former publication [12]. This illuminant was used for the reconstruction of textile samples, 
flower samples, skin samples and,- paint samples. Now the question is how the spectral 
reconstruction will work in cases of different illuminants with familiar spectral power 
distributions. Moreover, the second question is what happens if the spectral components of the 
illuminant are unknown. The illuminants are as it follows. 
CIE D65 standard illuminant, which corresponds to the daylight distribution with 6 504K 
correlated color temperature. (Figure 2) 

 
Figure 2. The spectal power distribution of CIE 

D65 illuminant  

 
Figure 3. The spectral power distribution of CIE 

D50 illuminant 
CIE D50 standard illuminant represents the daylight with a correlated color temperature of 5 003 
K. (Figure 3) CIE A standard illuminant is intended to represent tungsten-filament lighting. Its 



ISSN: 1584-2665 [print]; ISSN: 1584-2673 [online] 

49 | Fascicule 1 

spectral power distribution corresponds to that of a Planckian radiator with a temperature of 2 856 
K(Figure 4). 

 
Figure 4. The spectral power distribution of theCIE 

A illuminant 

 
Figure 5. The spectral power distribution of the 

CIE E illuminant 
CIE E equienergetic illuminant. This illuminant has constant spectral power distribution. This 
theoretical radiator renders equivalent weight to each wavelength. (Figure 5) CIE F11 standard 
illuminant. Its spectral power distributions correspond to the power distributions of narrow-band 
fluorescent lamp with 4 000K correlated color temperature (Figure 6). 

 
Figure 6. The spectral power distribution of the 

CIE F11 illuminant 

 
Figure 7. The spectral power distribution of the 

white LEDs with phosphor 
White LEDs with phosphor and three-band white LEDs with 5 000K and 6 504K correlated color 
temperature arealso applied. The white LED with phosphor with 5 000K is named as LED1, the 
three-band white LED with 5 000K is named as LED2, the white LED with phosphor with 6 505K 
is named as LED3 and the three-band LED with 6 504K is named as LED4. Figure 7 shows the 
spectral power distributions of the white LEDs with phosphor, Figure 8 shows the spectral power 
distributions of the three-band, white LEDs. Figure 9 shows the spectral power distribution of the 
Planck radiator whose color temperature is 6 504 K and which is also used in this research. 

 
Figure 8. The spectral power distribution of the 

three-band LEDs 

 
Figure 9. The spectral power distribution of the 

Planck radiator at the color temperature of 6504 K 
The reconstruction of color samples under illuminants with known spectral power distributions 
The reconstruction of the reflectance functions of the depicted textile samples has been done by the 
help of genetic optimization on the basis of the tristimulus values Z,Y,X . The first five eigenvectors 
given by the PCA and complemented with restrictive conditions on the reflectance functions of real 
samples were used. Each sample has been reconstructed under the above mentioned illuminants. 
Figure 10 shows the reconstruction for some samples. 
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Figure 10. The reconstruction of color samples supposing different illuminants 

The values GFC,RMS,E*
ab∆ giving the 

reconstruction accuracy have been determined for 
each sample in case of each resource. The numeric 
values are given with the use of the original 
reflectance function which is presumed unknown 
and the reflectance function gained after 
optimization under the given illuminants. Table 1 
shows the average of the values GFC,RMS,E*

ab∆ for 
the tested samples. 
As for comparison, Table 2 shows the mean values 
RMS for the reconstructions of other textile samples 
indicated in publication [10]. The first three 
eigenvectors are used by the help of PCA and wPCA. 

Table 2. The mean values of RMS with methods of PCA and wPCA and using three eigenvectors. 
PCA:  wPCA:  

0.073 0.059 

Table 1. The mean values of GFC,RMSE ,*

ab
∆ in 

case of different illuminants with genetic 
optimization and with the use of five 

eigenvectors. 

 RMS  GFC  *
abE∆  

CIE E 0.0300 0.9926 0.0100 
CIE D65 0.0307 0.9918 0.0105 
CIE D50 0.0294 0.9914 0.0133 

CIE A 0.0316 0.9914 0.0134 
CIE F11 0.0308 0.9922 0.0128 
LED1 0.0312 0.9915 0.0135 
LED2 0.0300 0.9919 0.0137 
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The tables show that our method of reconstruction which uses five eigenvectors and considers the 
restrictions on the forms of real samples provides much better results than the classical PCA and 
wPCA with the three eigenvectors. 
Figure 10 and Table 1 prove that our method does not depend on the type of the known illuminant. 
This method provides the reflectance function of one of the metamers of the color sample with great 
accuracy in case of any illuminants with known spectral power distribution. 
Illuminant with unknown spectral power distribution  
Is is natural demand to know what the reconstruction will be like if the spectral power distributions 
of the illuminants were not known. First, we supposed that we did not have any information 
about the illuminants. Then it is supposed that the white points nnn Z,Y,X  of the illuminants are 
known (see next chapter). 
A color sample is depicted and the reconstruction is done as it follows. It is supposed that the 
spectral power distribution of the real illuminant is unknown. Certainly, it has to be taken into 
account for the sake of the numerical formulation and the comparison but not for reconstruction. 
Then the authors use the seven above mentioned illuminants as the real, unknown illuminants of 
the samples, and the reconstructions are done with all the seven illuminants. That means 77⋅  cases 
altogether. Certainly, the illuminant that is used in reality is among the seven illuminants. The 
reconstruction is as accurate as in the former cases. When the illuminant is different from the real 
one, the reconstruction is generally quite weak. 
Figure 11 shows the reconstruction of one sample as it is described above. The title of the graph 
refers to the real but surpassingly unknown illuminant. The solid black line indicates the original 
sample in each case. The colorful lines indicate the reconstructed spectra under the supposed 
illuminants. Only few of the cases are shown because of immensity. 

 
Figure 11. The reconstruction in case of an unknown illuminant 

Table 3 shows the averages of the numerical values describing the reconstruction considering the 
combination of all illuminants, the combination without the real illuminant and the original, 
actual illuminant. 

Table 3. The mean values of GFC,RMSE ,*

ab
∆  for different combinations of illuminants 

 The combination of all 
illuminants 

The combination without the 
actual real illuminant 

The original, actual real 
illuminant 

RMS  0.1018 0.1144 0.0266 
GFC  0.9848 0.9828 0.9990 
*
abE∆  11.6112 13.5457 0.0041 

All the graphs show what the tables show: the reconstruction is not accurate if the spectral power 
distribution of the illuminant is unknown. 
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Illuminant with known white point but without known spectral power distribution 
As a next step, they examine the reconstruction when the spectral power distribution is unknown 
but there is some information about the illuminant and its white point is known. 
In this case, we modify the cost function (11) of the genetic reconstruction. Instead of the 
tristimulus values Z,Y,X , we use the values *** b,a,L  for optimization (18), (19). 

 ( ) vn
'
0M21 PPdc,,c,cd ++=  (18) 

Unlike equation (3), here '
0d  does not contain the tristimulus values of the sample, but the values 

*** b,a,L  (12) derived from the tristimulus values. They are used because the CIE Lab system 
considers the adaptation of white. 

 ( ) ( ) ( ) ( )2*
0

*2*
0

*2*
0

*
M21

'
0 bbaaLLc,,c,cd −+−+−=  (19) 

The values *
0

*
0

*
0 b,a,L  in the equation are the original values of the sample under an illuminant 

without known spectral distribution but with known white point. The values *** b,a,L  can be 
calculated from the reconstructed spectrum. During calculation, the white point of the chosen 
illuminant is used. The principal components are determined with the genetic optimization 
algorithm. 
The method of reconstruction is similar to the former ones. They use a real illuminant without 
known spectral distribution but known white point and the reconstruction is done with seven 
known illuminants. It means 77 ⋅  cases altogether. Figure 12 shows the reconstruction of a depicted 
sample. The title of the graph contains the name of the illuminant surpassingly without spectral 
power distribution but with known white point. Only few cases are shown because of immensity. 

 
Figure 12. The reconstruction for an illuminant whose spectral power distribution  

is unknown but the white point is known 
Table 4 shows the average value of GFC,RMS,E*

ab∆ for all possible combinations, even if the real, 
original illuminant is left out when the average values are determined. Moreover, the values are 
examined when the real illuminant is considered. 

Table 4. The mean values of GFC,RMSE ,*
ab∆  for different combinations of illuminants 

 The combination of all 
illuminants 

The combination without the 
actual real illuminant 

The original, actual 
real illuminant 

RMS  0.0759 0.0835 0.0302 
GFC  0.9915 0.9903 0.9984 
*
abE∆  0.0090 0.0102 0.0016 
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According to Figure 12 and Table 4, they can state that the reconstruction for an illuminant with 
unknown spectral distribution is more accurate if there is some information about it, in other 
words, the white point of it is known. However, the value RMS , which gives the reconstruction 
error, is still great. 
Illuminant with known white point and with correlated color temperature but without 
known spectral power distribution 
It is supposed that the results of the reconstruction will be better if they use illuminants with known 
spectral power distributions whose correlated color temperature values are the same as that of the 
actual real illuminants which have unknown spectral power distributions but their white points 
are known. They determined the spectrum for samples chosen randomly according to the 
description in the chapter mentioned above. The reconstruction is done with illuminants whose 
spectral power distribution is known instead of the actual real illuminant whose white point, 
correlated color temperature is only known but its spectral power distribution is unknown. The 
illuminants have the same correlated color temperature as the real one does. 
The principal components are provided by the genetic optimisation program. The following four 
illuminants are used in all four cases: CIE D65, white LED with phosphor (or LED3), three-band, 
white LED (or LED4) and the Planckian radiator. Figure 13 shows just a few cases of reconstruction. 
The title of the graph contains the name of the actual real illuminant that is supposed to be 
unknown. 

 
Figure 13. The reconstruction for illuminants whose spectral power distributions are unknown, but which 

have a known white point and a correlated colour temperature 
Table 5. The mean values of GFC,RMSE ,*

ab
∆  for different combinations of illuminants 

 The combination of 
all illuminants 

The combination without the 
actual real illuminant 

The original, actual real 
illuminant 

RMS  0.0389 0.0433 0.0258 
GFC  0.9921 0.9909 0.9959 

*
abE∆  0.0069 0.0082 0.0029 

The authors determine all the combinations and the average values of GFC,RMS,E*
ab∆ , when 

they do not calculate with the original illuminant and when they calculated with only that 
one. The values are shown by Table 5. 
Figure 13 and Table 5 show that the reconstruction is effective for an illuminant without known 
spectral power distribution but with a white point and correlated color temperature if the 
correlated color temperature of the illuminant is the same as the correlated color temperature of 
the original illuminant with unknown spectral power distribution. 
The Table 6 shows the summary of former cases. 
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Table 6. The summary of former cases 

 Illuminant above the color samples, S1 Illuminant used in the reconstruction, S2 

(spectrum always known) 

Chapter 5 spectrum known 21 SS =  

cost function’s basis: CIE XYZ 

Chapter 6 spectrum unknown - 
cost function’s basis: CIE XYZ 

Chapter 7 spectrum unknown , white point known 0bb,0aa,100LL *
2

*
1

*
2

*
1

*
2

*
1 ======  

cost function’s basis: CIE Lab 

Chapter 8 

spectrum unknown 
white point known ⇒ correlated color 

temperature known 

0bb,0aa,100LL *
2

*
1

*
2

*
1

*
2

*
1 ======  

( ) ( )1cp2cp STST =  

cost function’s basis: CIE Lab 
3. CONCLUSION 
Present study shows a genetic optimisation process that helps to reconstruct the reflectance function 
of colorful samples on the basis of their tristimulus values. During reconstruction the authors use 
the first five eigenvectors provided by the PCA together with restrictive terms for the shape of the 
reflectance functions of the real samples. It gives the opportunity to choose those metamers from 
their infinite set in such a way that the reflectance function corresponds with the reflectance 
functions of the real samples. 
This study examines how the above mentioned method works in case of 7 different illuminants 
whose spectral power distribution is known. It can be found that the genetic optimization provides 
the reflectance function accurately if the spectral power distribution of the illuminant is known 
and it does not depend on the type of the illuminant.  
Finally, the reconstruction is effective for an illuminant that has unknown spectral power 
distribution but known white point and a correlated color temperature when they use such an 
illuminant whose correlated color temperature is the same as that of the original one. 
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