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ABSTACT: This paper deals with stability problem of cart inverted pendulum controlled by a fractional order 
PD controller. Inverted pendulum is an underactuated mechanical system because it has one control input and 
two degrees of freedom. Mathematical model of cart pendulum system is derived and fractional order PD 
controller is introduced in order to stabilize it. Control strategy consists of two parts, a swing up controller and 
stabilizing controller. Problem of asymptotic stability of closed loop system is solved using the D-decomposition 
approach. Stability regions in control parameters space are calculated using this method, and tuning of the 
fractional order controller can be carried out. 
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1. INTRODUCTION  
Inverted pendulum is one of the most interesting problems in control theory and has been studied 
through many researches in control community. It is nonlinear, unstable and underactuated 
system, and thus an excellent benchmark for testing different control algorithms. On the other 
hand, in recent years considerable attention has been paid to fractional calculus and its application. 
In control theory fractional order controllers are used to improve the performance of closed loop 
systems. Among them, fractional order PID controllers are the ones most frequently used and were 
first introduced in. It has been shown that fractional order PID controller enhances the system 
control performance when used with integer order and fractional order plants.  
One of the basic requirements in control systems is their asymptotic stability. There are several 
methods for determining stability region of a closed loop system, and D-decomposition is one of them. 
In this paper, D-decomposition method is applied to the inverted pendulum case, and determining 
its stability regions in parameters space of a fractional order PD controller is presented. D-
decomposition for linear fractional systems is investigated, and for the case of linear parameters 
dependence. This technique enables efficient computational method for determining the asymptotic 
stability region. When stability regions are known, tuning of the fractional order controller can be 
carried out. 
First, mathematical model of cart pendulum system is presented. Then, a fractional order PD 
controller is introduced in order to stabilize the pendulum. Method for tuning the parameters of 
fractional order controller is given, using the abovementioned D-decomposition method. At the 
end, example is given and tests are made in order to verify that stability domains are well calculated. 
2. DYNAMIC EQUATIONS OF CART PENDULUM SYSTEM 
In Figure 1 a schematic of cart pendulum system is shown. It is a mechanical system with two 
degrees of freedom, where the cart position and the pendulum angle are denoted as x  and ϕ , 
respectively. Control of the system is by means of force F  applied horizontally to the cart. Hence, 
it is an underactuated mechanical system because it has only one control input and two degrees of 
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freedom. Parameters of the system are: M - mass of the cart, m - 
mass of the pendulum, L - total length of the pendulum, 0.5L - 
distance of the pendulum's pivot point to its center of mass, J - 
moment of inertia of the pendulum with respect to its pivot point. 
Applying Lagrange's method [1], the system's nonlinear 
equations of motion can be readily obtained, and can be 
expressed in the form 

( ) ( ) ( )( )2cos sin
2

mLm M x Fϕ ϕ ϕ ϕ+ + − + =  , 

  ( ) ( )cos sin 0
2 3 2
m mL mgx ϕ ϕ ϕ− + = .              (1)-(2) 

Now, we show the simplification of dynamic equations of the cart 
pendulum system. For this purpose, we use nonlinear control 

technique known as inverse dynamic control. It is basically a partial feedback linearization 
procedure [2], which simplifies the control design. The first step of this procedure is to calculate ϕ  
from Eq. (2) and plug it into Eq. (1). After rearranging, Eq. (1) now reads 

 ( ) ( ) ( ) ( )2 23 3cos sin cos sin
4 4 2
m mg mLm M x Fϕ ϕ ϕ ϕ ϕ + − − + = 

 
 .                               (3) 

We can see that ϕ  has been canceled out in (3). Control force F  can be chosen as follows   

 ( ) ( ) ( ) ( )2 23 3cos sin cos sin
4 4 2R
m mg mLF m M Fϕ ϕ ϕ ϕ ϕ = + − − + 

 
 ,                             (4) 

where RF  is new control signal. Now, Eqs. (1)-(2) become 

 Rx F= ,      ( ) ( )1sin cosR
g F
b b

ϕ ϕ ϕ= + .                                        (5)-(6) 

wherein 29.81g m s ≈    and 2 3b L= . We can see there is no influence from the motion of pendulum 

to cart position in this equations.  
3. CONTROLLER DESIGN 
Now, a control strategy is developed to stabilize the pendulum in upright position, and it consists 
of two different control problems. The first one is swinging the pendulum up from down to the 
upright position. Once the system is close to the desired position, with a simple change in the 
controller, it is possible to bring the pendulum in the desired equilibrium.  
3.1 Swing up controller 
There are many ways to bring the pendulum to the upper half plane, when / 2ϕ π< . One of the 
most popular is based on energy control [3]. The equation of motion for the pendulum is given by 
Eq. (6). The energy of the uncontrolled pendulum ( 0RF = ) is 

 ( )( )21 cos 1
2 2

LE J mgϕ ϕ= + + .                                                    (7) 

The energy is defined so that it is zero in downright rest position. Now, it is necessary to understand 
how the energy is influenced by the control input RF . We can find it by computing the time 
derivative of E  

 ( ) ( )sin cos
2 R

dE L JJ mg F
dt b

ϕϕ ϕ ϕ ϕ ϕ= − =    ,                                           (8) 

where Eq. (6) has been used to obtain the last equality. Equation (8) implies that system is simply 
an integrator with varying gain. To increase energy the control signal RF  should be positive when 
the quantity ( )cosϕ ϕ  is negative. With the Lyapunov function 

 
2

0( )
2

E E
V

−
= ,                                                                   (9) 

and the control law  
 ( )0( ) cos ,  0RF k E E k constϕ ϕ= − − = > ,                                           (10)  

we find that 

 ( ) ( )( )0
2

cosdV JV k E E
dt b

ϕ ϕ= = − −  .                                              (11) 

This control law drives the energy towards its desired value 0E mgL=  (inverted vertical position of 
pendulum), except when cos 0ϕ ϕ = . 

 
Figure 1. Cart pendulum system 
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3.2 Stabilizing controller 
Equations (5)-(6) are used for computer simulation of the system, but for controller design we must 
linearise Eq. (6) around unstable equilibrium point ( ) ( )x, , 0,0,0ϕ ϕ = . A controller derived from a 
linearized system will work for a nonlinear system, provided that region of attraction is not too 
large [2]. So, linearization around desired equilibrium point leads to 

 Rx F= ,       1
R

g F
b b

ϕ ϕ= + .                                              (12)-(13) 

We can see Eq. (5) is already linear, so it remains the same. New goal is to design RF  so that 
asymptotic stability for ( )x, ,ϕ ϕ  can be accomplished. To achieve this, an extended fractional order 
PD controller is proposed, as a generalization of the PID controller [4]. Control feedback law will 
be extended as follows 

 ( )
R P D DxF K K K xβ

ϕ ϕ= − ϕ− ϕ −  ,                                                       (14) 
wherein , ,P D DxK K Kϕ ϕ  denote proportional and differential gains of the controller, and β  is real 
differentiator parameter. After substituting Eq. (14) into Eqs. (12)-(13), we obtain 

 ( )
Dx P Dx K x K K β

ϕ ϕ+ = − ϕ− ϕ  ,     ( ) ( )D P Dxb K K g K xβ
ϕ ϕϕ ϕ ϕ+ + − = −  .              (15)-(16) 

Taking and 1β =  we obtain classical PD controller. Four parameters ( ), , ,Dx P DK K Kϕ ϕ β  in Eq. (14) can 
be changed in order to achieve asymptotic or relative stability of closed loop system. Goal of this 
paper is to determine the influence of PK ϕ , DK ϕ  and β  parameters on asymptotic stability of system 
described with Eqs.(15)-(16). 
4. D-DECOMPOSITION METHOD 
Using the classical D-decomposition method [5] the stability region in the parameter plane 
( ),P DK Kϕ ϕ  may be determined. The characteristic polynomial of the closed loop system described 
with (15)-(16) is given by: 

 ( )3 2 1(s) s Dx D P Dxf b bK s K s K g s gK+β
ϕ ϕ= + + + − −                                      (17) 

Plane ( ),P DK Kϕ ϕ  is decomposed by the boundaries of the D-decomposition into finite number 
regions D(k). Any point in D(k) corresponds to such values of PK ϕ  and DK ϕ  that polynomial (17) 
has exactly k zeroes with positive real parts. The region D(0) represents the stability region. Stability 
boundaries are curves on which each point corresponds to polynomial (17) having zeroes on the 
imaginary axes. We obtain this boundary by substituting s j= ω  in Eq. (17) and equating it to 0, i.e. 

 ( ) ( )3 2 1j (j ) (j ) (j ) 0Dx D P Dxb bK K K g gK+β
ϕ ϕω + ω + ω + − ω − = .                              (18) 

Term ( ) 1j β+ω  in equation above can be expressed as 

 ( ) ( ) ( )( )1 1 cos 1 2 sin 1 2 ,   0j jβ+ β+ω = ω β+ π + β+ π ω ≥                                   (19) 
Complex equation (18) can be rewritten as: 

 ( ) ( ), , , , , , 0P D P Du K K jv K Kϕ ϕ ϕ ϕω β ω β+ =                                           (20) 

where ( ), , ,P Du K Kϕ ϕω β  and ( ), , ,P Dv K Kϕ ϕω β  denote the real and imaginary part of (18). Equating the 
real and imaginary part of Eq. (20) to zero, and solving it for parameters ( ),P DK Kϕ ϕ

, we obtain 

( )
2

1 cos 1 2D Dx
a bK Kϕ β

ω
ω β π+

+
=

+
,    ( )2 sin 1 2P DK a b K β

ϕ ϕω ω β π= + − + .             (21)-(22) 

Equations (21) and (22) determine the stability boundaries in parameter space ( ),P DK Kϕ ϕ  for 

( )0,ω∈ ∞  and fixed values DxK  and β . By varying β  and repeating the D-decomposition procedure, 
different stability regions can be obtained.  
5. SIMULATION RESULTS 
In this section, simulation results of system described with (15)-(16) are presented. Using the D-
decomposition method, parameter space ( ),P DK Kϕ ϕ  can be divided into stable and unstable regions. 
The stable region can be found by checking one arbitrary test point within each region, and testing 
the stability of polynomial (17) using the inverse Laplace transformation.  
For the case [ ]0.7,  1.3β ∈  and 1L =  stability regions are plotted as shown in Figure 2. Stability region 
can then be visualized in a 3D plot as shown in Figure3. Picking a point deep inside stability region 
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we ensure that system is more 
robust with respect to 
parameter variations, whick 
implies bigger stability 
margins. 
Results of the swing up and 
stabilizing controller for 

4,  60,Dx PK K ϕ= − =  6DK ϕ =  and 
1.1β =  are shown in Figure 4. 

Figure shows results for the 
change of pendulum angle 
and cart position with respect 
to time. Initial conditions are 
( ) ( )x, , 0,  162 ,  0ϕ ϕ = ° . A change 
from swing up to stabilizing 
controller happens when 

30ϕ < ° . 
6. CONCLUSION 
In this paper, stability 
problem of cart pendulum 
system is investigated. 
Mathematical model of inverted pendulum is derived and fractional order PD controller is 
introduced in order to stabilize it. The problem of asymptotic stability of closed loop system is solved 
using the D-decomposition approach. On the basis of this method, analytical forms expressing the 
boundaries of stability regions in the parameters space were determined. An example is given and 
tests are made in order to confirm that stability domains are well calculated. Knowledge of these 
stability regions enables tuning of the fractional order PD controller. 
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Figure 2. 2D stability region        Figure 3. 3D stability region 

 
Figure 4. Swing up and stabilization of cart pendulum system 


