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ABSTRACT: The thin anisotropic elastic hollow circular disk is subjected to radial steady-state temperature 
field. It will be assumed that there is identical convective heat exchange on the lower and upper plane 
boundary surfaces and the conditions of the generalized plane-stress is satisfied. The time independent 
temperatures and pressures are prescribed on the inner and outer curved boundary surfaces. This paper 
presents an analytical solution in which the solution of the heat conduction equation is approximated by a 
rational function. 
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1. INTRODUCTION 
The determination of thermal stresses and displacements caused by axisymmetric steady-state 
temperature field in thin isotropic homogeneous and inhomogeneous elastic disk is the object of 
several works.  
Some textbooks such as Timoshenko and Goodier [1], Solecki and Conant [2], Barber [3], Baroumi 
and Ragab [4], Hetnarski and Eslami [5], Noda et. al [6] give detailed analysis of the thermal stress 
problem for homogeneous isotropic elastic disk with axisymmetric temperature field. In papers by 
Pen, X. and Li, X. [7] the thermoelastic problem of isotropic functionally graded disk with 
arbitrary radial nonhomogeneity is considered. The numerical solution of the steady-state 
thermoelastic problem is reduced to a solution of a Fredholm integral equation [7]. A general 
analysis of one dimensional steady-state thermal stresses in thick cylinder made of isotropic 
radially inhomogeneous elastic material is 
analysed by Jabbari et. al [8]. An analytical 
method is used to solve the heat conduction 
and Navier equations in [8].  
In the present paper we consider thin 
anisotropic homogeneous hollow circular 
disk which is subjected to axisymmetric 
steady-state temperature field. It is assumed 
that there is identical convective heat 
exchange on the lower and upper plane 
surfaces of the anisotropic disk. Books and 
papers [1-8] neglect the convective heat 
exchange on the surfaces z t= ±  (Figure 1). 
2. FORMULATION OF THE AXISYMMETRIC STEADY-STATE THERMAL STRESS PROBLEM AND 
ITS SOLUTION 
The governing equations of the considered steady-state thermal stress problem are formulated in 
cylindrical coordinate system (Orφz). The material of the elastic circular disk is cylindrical 
anisotropic and it is assumed that the conditions of generalized plane stress are satisfied [9]. The 

 
Figure 1. The sketch of the thin anisotropic disk 
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stress-strain relation for cylindrical anisotropic elastic material including thermal effect for 
generalized plane stress state can be written in the form [9-10]: 

 11 12 16 1r r rS S S Tϕ ϕε σ σ τ α= + + + ,                                             (1) 
 12 22 26 2r rS S S Tϕ ϕ ϕε σ σ τ α= + + + ,                                             (2) 
 16 26 66 6r r rS S S Tϕ ϕ ϕγ σ σ τ α= + + + .                                              (3) 

In equations (1-3) εr, εφ are normal strains, γrφ denotes the shear strain, σr and σφ are normal 
stresses, τrφ is shearing stress, T=τ-τ0 is the temperature difference, τ is the absolute temperature, 
τ0 is the reference temperature, Sij (i,j=1,2,6) is elastic compliance coefficient and αi (i=1,2,6) is 
the coefficient of linear thermal expansion. We look for the axisymmetric solution of the steady-
state thermal stress problem which means that all quantities depend only on the radial 
coordinate. Internal heat source and body forces are not present and the following boundary 
conditions are prescribed (Figure1). 

 1 1 2 2( ) , ( ) ,r rR p R pσ σ= − = −                                             (4) 
 1 2( ) ( ) 0,r rR Rϕ ϕτ τ= =                                                   (5) 
 1 1 2 2( ) , ( ) .T R T T R T= =                                                (6) 

For the generalized plane stress state when the stresses depend on only the radial coordinate the 
equations of mechanical equilibrium are as follows 

 0,rrd
dr r

ϕσ σσ −
+ =                                                  (7) 

 
2

0.r rd
dr r

ϕ ϕτ τ
+ =                                                 (8) 

From equation (8) it follows that  

 2 .r
F
rϕτ =                                                (9) 

Combination of Eq. (4) with Eq. (9) gives 
 0, 0.rF ϕτ= =                                              (10) 

Introducing Eq. (10) into Eqs. (1), (2) and expressing σr and σφ in terms of εr, εφ and T we obtain 
 11 12 1 ,r rC C Tϕσ ε ε β= + +                                                (11) 
 12 22 2 ,rC C Tϕ ϕσ ε ε β= + +                                               (12) 

where 

 22 12 11
11 12 22, , ,S S SC C C

S S S
= = − =                                            (13) 

 12 2 22 1 12 1 11 2
1 2, ,S S S S

S S
α α α αβ β− −

= =                                             (14) 

 2
11 22 12.S S S S= −                                        (15) 

For the present problem the strain - displacement relationship can be formulated as [1, 10] 

 , , ,r r
du u dv v
dr r dr rϕ ϕε ε γ= = = −                                      (16) 

where u=u(r) is the radial displacement and v=v(r) is the tangential displacement. Substitution of 
Equations (11), (12) and (16)1,2 into Eq. (7) gives the following differential equation for u=u(r): 

 
2

11 11 22 1 1 22 2

1 ( ) 0d u du u dT TC C C
dr r dr r dr r

β β β+ − + + − = .                               (17) 

The true temperature function which is the solution of the corresponding heat conduction 
equation is approximated (to avoid numerical problems and reduce the time of the numerical 
solution) as 

 2 1 1 2
2 1 0 1 2( ) ( ) .T r r r r r rϑ ϑ ϑ ϑ ϑ− −

− −≈ Θ = + + + +                                    (18) 
The next section of this paper deals with the determination of T=T(r) and its approximation 
θ=θ(r). We replace Eq. (17) by the following equation: 

 
2

11 11 22 1 1 22 2

1 ( ) 0d u du u dC C C
dr r dr r dr r

β β βΘ Θ
+ − + + − = .                                 (19) 

After lengthy derivation [11] the general solution of Eq. (19) can be written in the next form:  
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3 22 1 2 1 2 1
1 2 2 1 0

11 22 11 22 11 22

12 2 1
1 2

22 11 22

3 2( )
9 4

,

c cu r K r K r r r r
C C C C C C

r
C C C

β β β β β βϑ ϑ ϑ

β β βϑ ϑ

−

−
− −

− − −
= + + + + −

− − −
+

− +
−

                    (20) 

where 

 2 22

11

Cc
C

= .                                        (21) 

In Eq. (20) K1 and K2 are the constants of the integration. The combination of Eq. (20) yields the 
formula of normal stresses 

1 1 22 1
1 11 12 2 11 12 2 11 12

11 22

12 1 2 1 2
1 11 12 0 11 12 1 12

11 22 11 22 22

2 2 1 1 22 1
2 11 12 1 2 1 0 1 2

11 22

3( ) ( ) ( ) (3 )
9

2 (2 ) ( )
4

( ) ( ),

c c
r r K cC C r K cC C r C C r

C C

C C r C C C r
C C C C C

C C r r r r r
C C

β βσ ϑ

β β β β βϑ ϑ ϑ

β βϑ β ϑ ϑ ϑ ϑ ϑ

− − −

−
−

− − −
− − −

−
= + + − + + + +

−
− −

+ + + + − +
− −
+

+ − + + + + + +
−

             (22) 

1 1 22 1
1 12 22 2 12 22 2 12 22

11 22

12 1 2 1
1 12 22 0 12 22 1 2

11 22 11 22

2 2 1 1 22 1
2 12 22 2 2 1 0 1 2

11 22

3( ) ( ) ( ) (3 )
9

2 (2 ) ( )
4

( ) ( ).

c cr K cC C r K cC C r C C r
C C

C C r C C r
C C C C

C C r r r r r
C C

ϕ
β βσ ϑ

β β β βϑ ϑ ϑ β

β βϑ β ϑ ϑ ϑ ϑ ϑ

− − −

−
−

− − −
− − −

−
= + + − + + + +

−
− −

+ + + + − +
− −
+

+ − + + + + + +
−

             (23) 

By the use of Eqs. (3), (10) and Eq. (16)3 we can write 

 16 26 6( ) r
dv v d vr S S T
dr r dr r ϕσ σ α− = = + + .                                               (24) 

From Eq. (24) we obtain for the tangential displacement v=v(r) the following expression: 

 
1

1 16 26 6

( )( ) ( )( ) ( )
r

r

R

rr T rv r v R r S S dr
r r r

ϕσσ α− = + +∫ .                                      (25) 

In Eq. (25) v(R1) describes a rigid body rotation about axis z which may be an arbitrary value. 
3. DETERMINATION OF THE TEMPERATURE FIELD 
The hollow circular anisotropic disk is shown in Figure 1. Its thickness is 2t and it is assumed that 
there is identical convective heat exchange on the plane boundary surfaces z t= ± . Axisymmetric 
steady-state temperature field is caused by given surface temperature on the cylindrical boundary 
r=R1 and r=R2 ( z t≤ ). The surrounding medium has zero temperature and the prescribed 
boundary conditions in our problem are 

 1 1 2 2( ) , ( ) 0.T R T T R T= = =                                          (26) 
According to the Fourier’s law of heat conduction we have 

 11 12
1 ,r

T Tq
r r

λ λ
ϕ

∂ ∂
= − −

∂ ∂
                                        (27) 

 12 22
1 ,T Tq

r rϕ λ λ
ϕ

∂ ∂
= − −

∂ ∂
                                      (28) 

where λ11, λ12 and λ22 are the coefficients of thermal conductance of cylindrical anisotropic 
material. We consider only axisymmetric temperature field. This means that 

 0.T
ϕ
∂

=
∂

                                      (29) 

It was mentioned that there is no internal heat source and the material of the disk is 
homogeneous. In the present problem the heat flux vector 

 r( , ) ( , ) ( , )r q r q rϕϕ ϕ ϕ= = +r φq q e e                                          (30) 
satisfies the next equation [12]: 

 1( ) ( ) 0.r r qq qt hT t hT
r r r

ϕ

ϕ
∂∂

∇⋅ + = + + + =
∂ ∂

q                                      (31) 

In Eqs. (30), (31) er adn eφ are the unit vectors in radial and circumferential directions and  
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 1 ,
r r ϕ
∂ ∂

∇ = +
∂ ∂r φe e                                           (32) 

h is the heat transfer coefficient by convection and the dot between the vectors in Eq. (31) denotes 
their scalar product. The combination of Eqs. (27), (28), (29) with Eq. (31) leads to the result 

 
2

2
2

1 0,d T dT p T
dr r dr

+ − =                                           (33) 

where 

 2 .hp
tλ

=                                               (34) 

The general solution of the (33) differential equation is as follows [5, 11] 
 1 0 2 0( ) ( ) ( ),T r k I pr k K pr= +                                            (35) 

where k1 and k2 are the constants of integration. In Eq. (35) I0(x) is the modified Bessel function 
of the first kind and order zero and K0(x) is the corresponding function of the second kind. For 
the numerical computations the T=T(r) function is replaced by θ=θ(r) which is obtained from 
T=T(r) by the method of least squares approximation [13]. 
4. COMPUTATION OF THE CONSTANTS OF INTEGRATION 
We limited to our analysis to the case of stress boundary conditions 

 1 1 2 2( ) , ( ) 0.r rR p R pσ σ= − = − =                                          (36) 
Let σ(r) be defined as 

22 1 2 1 2 1
2 11 12 1 11 12 0 11 12

11 22 11 22 11 22

1 2 2 1 1 22 2 1
1 12 2 11 12 1 2 1 0 1 2

22 11 22

3 2( ) (3 ) (2 ) ( )
9 4

( ) ( ), (37)

r C C r C C r C C
C C C C C C

C r C C r r r r r
C C C

β β β β β βσ ϑ ϑ ϑ

β β βϑ ϑ β ϑ ϑ ϑ ϑ ϑ− − − −
− − − −

− − −
= + + + + + −

− − −
+

− + − + + + + + +
−

 

Using the formula of  σr(r) and Eqs. (36), (37) we get for the constants K1 and K2 

 1 22 2 12 2 11 1 21
1 2

11 22 12 21 11 22 12 21

, ,f a f a f a f aK K
a a a a a a a a

− −
= =

− −
                                        (38) 

where 
 1 1

11 11 12 1 12 11 12 1( ) , ( ) ,c ca cC C R a cC C R− − −= + = − +                                         (39) 
 1 1

21 11 12 2 22 11 12 2( ) , ( ) ,c ca cC C R a cC C R− − −= + = − +                                         (40) 
 1 1 2 2( ), ( ).f p R f Rσ σ= − − = −                                                    (41) 

From Eqs. (26), (35) it follows that  

 0 2
1 1

0 1 0 2 0 2 0 1

( ) ,
( ) ( ) ( ) ( )

K pRk T
I pR K pR I pR K pR

=
−

                                                 (42) 

 0 2
2 1

0 1 0 2 0 2 0 1

( ) .
( ) ( ) ( ) ( )

I pRk T
I pR K pR I pR K pR

= −
−

                                                   (43) 

5. NUMERICAL EXAMPLE 
The following data are used for the numerical computation: 

1 2 11 12

2
6 6 6 10

1 2 6 11

2 2 2
11 10 10

12 16 22

26

0.02 , 0.08 , 0.0015 , 50 , 70 , 150 ,

1 1 118.73 10 , 11.981 10 , 11.69 10 , 0.8053 10 ,

0.7878 10 , 0.3243 10 , 0.3475 10 ,

0.4696

W WR m R m t m h T C
mK m K

mS
K K K N

m m mS S S
N N N

S

λ

α α α− − − −

− − −

= = = = = = °

= ⋅ = ⋅ = − ⋅ = ⋅

= − ⋅ = − ⋅ = ⋅

= − ⋅
2 2

10 10
6610 , 0.1141 10 .m mS

N N
− −= ⋅

 

The temperature function T=T(r) denoted with blue solid line, θ=θ(r) with red dash line are 
shown in Figure 2/a and the errors of the applied approximation are indicated in Figure 2/b. The 
definition of error functions e1=e1(r) and e2=e2(r) are as follows 

 1 2

( ) ( )
( ) ( )( ) , ( ) .( )( )

d r dT r
r T r dr dre r e r dT rT r

dr

Θ
−Θ −

= =                                          (44) 
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Figure 2. The temperature function T(r), its approximation θ(r)  

and the error functions (e1(r) and e2(r)). 
According to the computations the error of 
the approximated temperature function is 
under 1.5% (Figure 2).We considered three 
numerical examples. First we investigated 
the original problem (θ(r)≠0K, T1=150K, 
p1=20MPa and denoted by red solid lines 
in the diagrams: Figure 3-Figure 6), then 
the heat load free case (blue dash line, 
θ(r)=0K, p1=20MPa) and in the last case 
we dealt with the steady-state thermal 
stress problem when p1=0MPa, θ(r)≠0K 
and T1=150K (green dashdot line). Figure 
3 indicates the solutions for the displacemet 
fields of this cases. 
The calculated radial stresses can be seen in Figure 4 and the σφ normal stresses are shown in 
Figure 5 as the function of the radial coordinate. Figure 6 illustrates the solutions for the 
tangential displacements of the investigated cases.  

  
Figure 4. The solutions of the radial stresses of the 

investigated cases 
Figure 5. The plots of the tangential  

normal stresses 

 
Figure 6. The solutions for the tangential displacement (v(r)) 

 
Figure 3. The solutions of the displacement fields 
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6. CONCLUSIONS 
This paper presents an approximate analytical solution for the determination of a steady-state 
thermal stress problem. The thin elastic hollow circular disk is subjected to radial steady-state 
temperature field. The material of the considered disk is cylindrical anisotropic. It is assumed that 
there is identical convective heat exchange on the lower and upper plane boundary surfaces and 
the conditions of the generalized plane stress state is satisfied. The presented analytical solution is 
based on the least squares approximation of the temperature field. Examples illustrate the 
application of the developed approximate analytical methods. 
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