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ABSTRACT: This article aims to analyze the effect of different porous structures on the behaviour of a 
porous rough tilted pad bearing in the presence of a magnetic fluid lubricant. The globular sphere model 
of Kozeny- Carman and the capillary fissures model of Irmay have been adopted to study the porosity 
effect. A stochastic random variable characterizes the transverse surface roughness of the bearing surfaces. 
Making use of Christensen and Tonder’s stochastic model for roughness the generalized Reynolds equation 
is derived. The expression for pressure distribution is obtained by resorting to suitable boundary 
conditions. Then the load carrying capacity of the bearing system is calculated. The results presented in 
graphical form indicate that the magnetization enhances the performance of the bearing system. Although, 
the effect of transverse roughness is found to be adverse in general there exist some scopes to obtain 
relatively better performance at least in the case of negatively skewed roughness. Kozeny-Carman model 
for porosity scores over Irmay’s model from performance point of view. 
Keywords: tilted pad bearing, roughness, magnetic fluid, porous structures 
 
1. INTRODUCTION 
Capitao [6] carried out a full scale experimental programme to investigate the influence of fluid 
film turbulence on the performance of the tilting pad self-equalization type thrust bearing. 
Glavatskih [12] reported the results of the experimental investigation into the steady state 
performance characteristics of a tilting pad thrust bearing typical of design for general use. The 
effect of operating conditions on bearing performance was discussed. A small radial temperature 
variation was observed in the collar. It was also found that the pressure profiles changed with the 
temperature of the supplied oil. Wasilczuk [26] compared the optimum profile hydrodynamic 
thrust bearing with a typical tilting pad thrust bearing. The experimental results showed a 
substantial increase in the minimum oil film thickness and lower temperature in the bearing with 
the elastic thrust pad. This was due to the optimum oil gap profile in the bearing. Heinrichson et 
al. [13] described the effects of high pressure injection pockets on the operating conditions of 
tilting pad thrust bearing. This paper experimentally investigated the influence of an oil injection 
pocket on the pressure distribution and oil film thickness and validated a numerical model with 
respect to its ability to predict the influence of such a pocket on the pressure distribution and oil 
film thickness. Yongbin [27] considered a tilted pad thrust slider bearing improved by the 
boundary slippage. It was found that the most increase in the load carrying capacity by the 
boundary slippage was around 30% while the most reduction of friction coefficient of the bearing 
by the boundary slippage was more than 40%. 
Sinha and Adamu [25] dealt with the thermal and roughness effect on the performance 
characteristics of an infinite tilted pad slider bearing. It was observed that the load carrying 
capacity due to roughness effect for both the models was more than due to combined effect for a 
non-parallel slider bearing. It was also established that the load carrying capacity due to the 
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combined effect was less than the load due to thermal effect for the longitudinal roughness and it 
was opposite for transverse roughness. Adamu and Sinha [1] modified the above analysis and 
analyzed the thermal and roughness effect on different performance characteristics of an 
infinitely long tilted pad slider considering heat conduction through both the pad and slider. Here 
the irregular domain of the fluid due to roughness was mapped on to a regular domain, so that 
numerical method was easily adopted. The Reynolds equation for pressure distribution and the 
heat conduction equation on the pad slider were solved using finite difference method to obtain 
the bearing characteristics.  
Chiang et al. [7] studied the performance of a magneto hydrodynamic tilted bearing with surface 
roughness lubricated by a ferrofluid. According to the results compared with the Newtonian 
fluids the tilted bearing lubricated with magnetic ferrofluid had the higher built up pressure 
distribution and load carrying capacity. The responding time decreased with increasing mean 
values associated with the roughness. Shukla and Deheri [24] proposed to study the magnetic 
fluid lubrication of a rough tilted pad slider bearing. It was concluded that the adverse effect of 
transverse roughness could be minimized to some extent by the positive effect of magnetization 
which remained enhanced in the case of negatively skewed roughness. Patel and Deheri [20] 
discussed the comparison of various porous structures on the performance of a magnetic fluid 
based transversely rough short bearing. Patel and Deheri [21] dealt with the analytical solution 
for pressure, load and friction for a magnetic fluid based double layered porous slider bearing. It 
was found that the magnetization tried to compensate the adverse effect of roughness for a large 
range of combined porous structures. Patel and Deheri [22] presented an analytical solution for 
the performance characteristics of a magnetic fluid based double layered porous rough slider 
bearing. It was noticed that the increased load carrying capacity owing to double layered gets 
enhanced due to the magnetic fluid lubricant and this goes a long way in reducing the adverse 
effect of roughness in the case of Kozeny-Carman model. 
Here it has been sought to analyse the effect of 
various porous structures on the magnetic fluid 
lubrication of a rough porous tilted pad bearing. 
2. ANALYSIS 
Figure 1 shows the geometry of the Tilted Pad 
bearing. The gap h increases with x, hence the 
runner has to move towards the origin with its 
velocity –U. Here the minimum film thickness is h0 
and maximum h1. The position of h0 is distance H 
from the origin and h1 is H + B away. By 
similarity of triangles one obtains, 

h =
xh0
H

, H = B �
h0

h1 − h0
� =

B
K

, K =
h1 − h0

h0
 

The  lubricant  film  is considered to be isoviscous  and  incompressible  and  the  flow  is  
laminar. It is assumed that the bearing surfaces are transversely rough. According to the 
stochastic model of Christensen and Tonder [8, 9, 10], the thickness h(x)  of the lubricant film is 
considered as 

h(x) = h̄(x) + hs 
where  h̄(x)  is  the  mean  film  thickness  and  hs  is  the  deviation  from  the  mean  film  
thickness  characterizing  the  random  roughness  of  the  bearing  surfaces. hs is governed  by  
the  probability  density  function 

    f(hs) = �
35

32c1
�1 −

hs
2

c12
�
3

,−c1 ≤ hs ≤ c1

0                      ,    elsewhere
. 

wherein c1  is  the  maximum  deviation  from  the  mean  film  thickness. The  mean α, the  
standard  deviation  σ  and  the  parameter  ε  which  is  the  measure  of  symmetry  of  the  
random  variable  hs, are  defined and discussed in Christensen and Tonder [8, 9, 10]. 
 Agrawal [2] considered the magnetic fluid lubrication effect by taking the magnetic field oblique 
to the stator. The effect of various forms of magnitude of the magnetic field has been discussed by 

o U 
θ 

X 

H 
B 

h h1 h0 

Figure 1: Configuration of the bearing system 
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Prajapati [23]. Following this discussion therein, the magnitude of the magnetic field is considered 
to be 

M2 = kB �
h

h0
− 1� �K + 1 −

h
h0
� 

where k is a suitably chosen constant from dimensionless point of  view so as to produce a 
magnetic field of strength over 10-23(Bhat  and  Deheri [3]). 
Under the usual assumptions of hydro magnetic lubrication (Bhat [4], Prajapati [23], Deheri et al. 
[11]) the Reynolds equation governing the pressure distribution is obtained as    

d
dx
�p −

µ0 µ�M2

2
� = −6Uη

h − h�
g(h)

                                                                (1) 

where g(h) = h3 + 3h2α + 3(σ2 + α2)h + 3σ2α + α3 + ε + 12ψl1. 
while  µ0   is  the  magnetic  susceptibility, µ�  is  the  free  space  permeability, µ  is  the  lubricant  
viscosity and ψ is permeability of porous region, h� is a constant to be determined and l1 is layer 
thickness.  
The associated boundary conditions are 
                                                       p = 0 at h = h0 and h = h1                                                   (2) 

Case 1: (A globular sphere model) 
A porous material is filled with globular spherical particles (a mean 
particle size cD ) as shown in Figure A. 
The Kozeny-Carman equation is well known in the fluid dynamics. 
This model when applied to laminar flow, yields better results for 
pressure drop. The pressure gradient is treated to be linear. Liu [15], 
Patel and Deheri [17] suggest that the use of Kozeny-Carman 
formula turns in the relation  

ψ =  
Dc
2e3

72(1 − e)2
l
l′

 

where e is the porosity and 
l′

l
 is the length ratio. From experimental investigations the length ratio 

veers around 2.5 under suitable situations. Thus, the Kozeny-Carman formula takes the form 
(Patel and Deheri [19])  

ψ =  
Dc
2e3

180(1 − e)2 

Introducing the dimensionless quantities 

l∗ =
l
l′

, P =
h02

6UηB
p, h∗ =

h
h0

, µ∗ =
kµ0µ�h02

Uη
, λ =

h�
h0

 ,σ� =  
σ
h0

 ,α� =  
α
h0

 , ε� =  
ε

h03
 ,ψ� =  

Dc
2l1

h03
, 

a = 3α�, b = 3(α�2 + σ�2), c = α�3 + 3σ�2α� + ε� +
ψ�  l∗e3

6(1 − e)2 , J = �−2a3 + 3√3K1 + 9ab − 27c
3

, 

K1 = �4a3c − a2b2 − 18abc + 4b3 + 27c2, J1 =
J

3√23 −
√23 (3b − a2)

3 J
−

a
3

, Q =
J

6√23 , A =
J1
S

, 

R =
(3b − a2)

322 3⁄  J
, J2 = −2Q + 2R −

2a
3

, J3 = 4Q2 + 4QR + 4R2 + 2Q
a
3
− 2R

a
3

+
a2

9
, B = −A,  

S = J12 − J1J2 + J3, C =
J3
S

, A1 =
1
S

, B1 = −A1, C1 =
J2 − J1

S
, D = ln �

1 − J1
K + 1 − J1

�, 

E = ln �
1 − J2 + J3

(K + 1)2 − J2(K + 1) + J3
� , F = tan−1 �

−2K�4J3 − J22

(4J3 − J22) + (2 − J2)(2(K + 1) − J2)�, 

G =
J2B + 2C
�4J3 − J22

, q =
J2B1 + 2C1
�4J3 − J22

, λ =
(AD + (B 2⁄ )E + GF)

(A1D + (B1 2⁄ )E + qF) , P1 = ln �
h∗ − J1
1 − J1

�, 

P2 = ln�
h∗2 − J2h∗ + J3

1 − J2 + J3
� , P3 = tan−1 �

2(h∗ − 1)�4J3 − J22

(4J3 − J22) + (2 − J2)(2h∗ − J2)� 

 
Figure A: Structure model 
of porous sheets given by 

Kozeny-Carman 
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w1 = (K + 1 − J1)(−D) − K, I = tan−1 �
2(K + 1) − J2
�4J3 − J22

� − tan−1 �
2 − J2

�4J3 − J22
�,  

N = ln�1 + �
2 − J2

�4J3 − J22
�
2

� − ln�1 + �
2(K + 1) − J2
�4J3 − J22

�
2

�, 

w2 = �4J3 − J22 I + �
2(K + 1) − J2

2
� (−E) − 2K, w3 = �

2(K + 1) − J2
2

� I +
�4J3 − J22

4
 N.    (3) 

and the non-dimensional form of roughness term 

g�h�� = h∗3 + 3h∗2α� + 3 (σ�2 + α�2)h∗ + 3σ�2α� + α�3 + ε� +
ψ�  l∗e3

6(1 − e)2, 

resorting to the boundary conditions (2), the non-dimensional form of the pressure distribution 
in the case of Kozeny- Carman, is derived as   

P =
µ∗

12
(h∗ − 1)(K + 1 − h∗) −

1
K
�(A − λA1)P1 +

1
2

(B − λB1)P2 + (G − λq)P3�           (4) 

The load carrying capacity of the bearing system then is determined by   

W =
h02

6UηLB2 w =
1
K
� pdh
h1

h0
                                                               (5) 

Consequently, the expression for the dimensionless load carrying capacity turns out to be  

W =
µ∗

72
K2 −

1
K2 �(A − λA1)w1 +

1
2

(B − λB1)w2 + (G − λq)w3�                       (6) 

Case-2 :( A capillary fissures model) 
Figure B, the model of porous sheets given by Irmay, consists of three 
sets of mutually orthogonal fissures (a mean solid size sD ). Assuming 
no loss of hydraulic gradient at the junctions, Irmay [14] obtained the 
permeability, 

ψ =  
Ds
2 �1 − (1 − e)

2
3�

12(1 − e)  

where e is the porosity (Patel and Deheri [18]). 
The following non dimensional quantities are introduced in the sequel: 

ψ∗ =  
Ds
2l1

h03
. c∗ = α�3 + 3σ�2α� + ε� +

ψ∗ �1 − (1 − e)
2
3�

(1 − e) , J∗ = �−2a3 + 3√3K1
∗ + 9ab − 27c∗

3
,  

K1
∗ = �4a3c∗ − a2b2 − 18abc∗ + 4b3 + 27c∗2, J1∗ =

J∗

3√23 −
√23 (3b − a2)

3J∗
−

a
3

, Q∗ =
J∗

6√23 , 

R∗ =
(3b − a2)
322 3⁄  J∗

, J2∗ = −2Q∗ + 2R∗ −
2a
3

, J3∗ = 4Q∗2 + 4Q∗R∗ + 4R∗2 + 2Q∗ a
3
− 2R∗ a

3
+

a2

9
, 

S∗ = J1∗2 − J1∗J2∗ + J3∗ , A∗ =
J1∗

S∗
, B∗ = −A∗, C∗ =

J3∗

S∗
, A1

∗ =
1
S∗

, B1∗ = −A1
∗ , C1∗ =

J2∗ − J1∗

S∗
, 

D∗ = ln�
1 − J1∗

K + 1 − J1∗
� , E∗ = ln�

1 − J2∗ + J3∗

(K + 1)2 − J2∗(K + 1) + J3∗
� , λ =

(A∗D∗ + (B∗ 2⁄ )E∗ + G∗F∗)
(A1

∗D∗ + (B1∗ 2⁄ )E∗ + q∗F∗)
, 

F∗ = tan−1 �
−2K�4J3∗ − J2∗2

(4J3∗ − J2∗2) + (2 − J2∗)(2(K + 1) − J2∗)� , q =
J2∗B1∗ + 2C1∗

�4J3∗ − J2∗2
, P1∗ = ln�

h∗ − J1∗

1 − J1∗
�, 

P2∗ = ln�
h∗2 − J2∗h∗ + J3∗

1 − J2∗ + J3∗
� , P3∗ = tan−1 �

2(h∗ − 1)�4J3∗ − J2∗2

(4J3∗ − J2∗2) + (2 − J2∗)(2h∗ − J2∗)� , G∗ =
J2∗B∗ + 2C∗

�4J3∗ − J2∗2
, 

w1
∗ = (K + 1 − J1∗)(−D∗) − K, I∗ = tan−1 �

2(K + 1) − J2∗

�4J3∗ − J2∗2
� − tan−1 �

2 − J2∗

�4J3∗ − J2∗2
�,  

 
Figure B: Structure 

model of porous sheets 
given by Irmay 
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N∗ = ln�1 + �
2 − J2∗

�4J3∗ − J2∗2
�
2

� − ln�1 + �
2(K + 1) − J2∗

�4J3∗ − J2∗2
�
2

�, 

w2
∗ = �4J3∗ − J2∗2 I∗ + �

2(K + 1) − J2∗

2
� (−E∗) − 2K, w3

∗ = �
2(K + 1) − J2∗

2
� I∗ +

�4J3∗ − J2∗2

4
 N∗ 

In view of boundary conditions (2) and making use of non-dimensional form of roughness term  

g�h�∗� = h∗3 + 3h∗2α� + 3 (σ�2 + α�2)h∗ + 3σ�2α� + α�3 + ε� +
ψ∗ �1 − (1 − e)

2
3�

(1 − e) , 

the dimensionless pressure distribution for Irmay model is found to be 

P∗ =
µ∗

12
(h∗ − 1)(K + 1 − h∗) −

1
K
�(A∗ − λ∗A1

∗ )P1∗ +
1
2

(B∗ − λ∗B1∗)P2∗ + (G∗ − λ∗q∗)P3∗�      (7) 

From Equation (5), the non-dimensional load carrying capacity is calculated as  

W∗ =
µ∗

72
K2 −

1
K2 �(A∗ − λ∗A1

∗ )w1
∗ +

1
2

(B∗ − λ∗B1∗)w2
∗ + (G∗ − λ∗q∗)w3

∗�                    (8) 

3. RESULTS AND DISCUSSIONS 

It can be observed that the pressure increases by 
µ∗

12
(h∗ − 1)(K + 1 − h∗) while the increase in 

load carrying capacity is 
µ∗

72
K2 due to the magnetic fluid lubrication as compared to the case of 

conventional lubricants. Further, it is concluded that at least there is 1.38% increase in the load 
due to the magnetic fluid. Besides, as the expression determining the dimensionless load carrying 
capacity is linear with respect to magnetization µ∗ , increasing values of  µ∗ could lead to 
increased load carrying capacity. In the absence of roughness this investigation reduces to the 
porosity effect on different performance characteristics of a magnetic fluid based Tilted pad slider 
bearing. Lastly, taking µ∗ to be zero this investigation reduces to the discussion of Cameron [5] 
and Majumdar [16] in the absence of porosity.  

 
Figure 2: Variation of Load carrying capacity 

with respect to σ� and ε�. 

 
Figure 3: Variation of Load carrying capacity 

with respect to σ� and α�. 

 
Figure 4: Variation of Load carrying capacity 

with respect to σ� and e. 

 
Figure 5: Variation of Load carrying capacity 

with respect to σ� and ψ� . 
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Figure 6: Variation of Load carrying capacity 

with respect to σ� and K. 

 
Figure 7: Variation of Load carrying capacity 

with respect to ε� and α�. 

 
Figure 8: Variation of Load carrying capacity 

with respect to ε� and e. 

 
Figure 9: Variation of Load carrying capacity 

with respect to ε� and ψ� . 

 
Figure 10: Variation of Load carrying capacity 

with respect to ε� and K. 

 
Figure 11: Variation of Load carrying capacity 

with respect to  α� and e. 

 
Figure 12: Variation of Load carrying capacity 

with respect to  α� and ψ� . 

 
Figure 13: Variation of Load carrying capacity 

with respect to  α� and K. 
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Figure 14: Variation of Load carrying capacity 

with respect to e and ψ� . 

 
Figure 15: Variation of Load carrying capacity 

with respect to e and K. 

 
Figure 16: Variation of Load carrying capacity 

with respect to ψ� and K. 

 
Figure 17: Variation of Load carrying capacity 

with respect to σ� and ε�. 

 
Figure 18: Variation of Load carrying capacity 

with respect to σ� and  α�. 

 
Figure 19: Variation of Load carrying capacity 

with respect to σ� and e. 

 
Figure 20: Variation of Load carrying capacity 

with respect to σ� and ψ∗. 

 
Figure 21: Variation of Load carrying capacity 

with respect to σ� and K. 
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Figure 22: Variation of Load carrying capacity 

with respect to ε� and  α�. 

 
Figure 23: Variation of Load carrying capacity 

with respect to ε� and e. 

 
Figure 24: Variation of Load carrying capacity 

with respect to ε� and ψ∗. 

 
Figure 25: Variation of Load carrying capacity 

with respect to ε� and K. 

 
Figure 26: Variation of Load carrying capacity 

with respect to  α� and e. 

 
Figure 27: Variation of Load carrying capacity 

with respect to  α� and ψ∗. 

 
Figure 28: Variation of Load carrying capacity 

with respect to  α� and K. 

 
Figure 29: Variation of Load carrying capacity 

with respect to e and ψ∗. 
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Figure 30: Variation of Load carrying capacity 

with respect to e and K. 

 
Figure 31: Variation of Load carrying capacity 

with respect to ψ∗ and K. 
Figures 2-16 are for the load carrying capacity concerned with Kozeny- Carman’s model while 
the load carrying capacity corresponding to Irmay are presented in Figures 17-31. 
The variation of load carrying capacity with respect to standard deviation presented in figures 2-
6 and 17-21 makes it clear that the load carrying capacity reduces due to the standard deviation. 
It is seen that in the case of both the models the effect of skewness on the variation of load 
carrying capacity with respect to the standard deviation is at the most nominal. Further, the effect 
of porous structure parameter on the distribution of load carrying capacity with respect to 
standard deviation is almost negligible in the case of Kozeny-Carman’s model. Also, the effect of 
variance on the variation of load carrying capacity with respect to standard deviation is at the 
most nominal in the case of Irmay’s model. 
The effect of skewness is presented in figures 7-10 and 22-25. It is seen that positively skewed 
roughness decreases the load carrying capacity in the case of both the models but this decrease is 
more in the case of Kozeny-Carman’s model. Besides, the negatively skewed roughness increases 
the load carrying capacity and this increase is more in Kozeny-Carman’s model.    
Figures 11-13 and 26-28 depict the distribution of load carrying capacity with respect to the 
variance. The variance follows almost the path of skewness so far as the trends of load carrying 
capacity are concerned. However, the effect of porous structure on the variance of load carrying 
capacity with respect to variance is not that significant in the case of Kozeny-Carman’s model. It 
is interesting to see that at the most the effect of variance is nominal in the case of Irmay’s model. 
The fact that porosity reduces the load carrying capacity is reflected in figures 14-15 and 29-30. 
Further, it is seen that the initial combined effect of porosity and porous structure is not that 
significant in the case of Kozeny-Carman’s model. 
The nominal increase in the load carrying capacity with respect to porosity is to be found in 
figures 16 and 31, when considered with film thickness ratio. 
In fact a scrutiny of the graphs reveals the following: 
1. The load carrying capacity increases owing to the magnetization and this increase is relatively 

more in the case of Kozeny-Carman’s model.  
2. The roughness has adverse effect in general but negatively skewed roughness increases the non 

dimensional load carrying capacity and this gets further increased by the variance(-ve).  
3. Porosity affects the bearing system adversely. However, this effect is relatively less in the case 

of Kozeny-Carman’s model.  
4. The standard deviation associated with roughness induces a negative effect as load carrying 

capacity decreases substantially. 
5. The negative effect of porosity and standard deviation can be minimized by the positive effect 

of magnetization in the case of negatively skewed roughness and this reduction is more in the 
case of Kozeny-Carman’s model.  

6. The bearing can support a load even when there is no flow, for both the models.  
4. CONCLUSIONS 
The adverse effect of roughness can be minimized by the positive effect of magnetization and the 
positive effect of variance negative in the case of Kozeny-Carman’s model. The effect of skewness 
remains superior as compared to the variance for the Kozeny-Carman’s model. This article 
suggests that the roughness aspects must be given due respect while designing the bearing system 
even if there is the presence of a suitable magnetic strength. The negatively skewed roughness 
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may go a long way for mitigating the negative effect of porosity in both the models. The Kozeny-
Carman’s model may be preferred over the Irmay’s model for this type of bearing system.  
Acknowledgements: The authors acknowledge with thanks the fruitful comments and suggestions of the 
Editor/reviewers leading to an improvement in the presentation of the paper. 
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