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ABSTACT: In this paper the direct numerical simulation of the full Navier-Stokes equation in vorticity-
stream function form for the case of an inclined fluid layer with temperature modulation on the upper 
plate is presented. The fluid flows between parallel plates which are inclined with some angle α in respect 
to the horizontal plane. The lower side of the viscous fluid layer is constant temperature surface. Since the 
temperature of the upper plate is higher than the lower plate, Rayleigh-Benard convection appears mostly 
in the upper zone. We investigate the stability of this convection for water as a working fluid. The results 
of direct numerical simulation are presented as fields of temperature, vorticty, stream function and 
velocity. This paper is concerned by the National Program of Energy Efficiency, project number: III42008, 
funded by the Government of Republic of Serbia. 
Keywords: Direct numerical simulation; Navier-Stokes equations; Rayleigh-Bénard convection; Non-linear 
flow instability; Viscous fluid flow 
 
1. INTRODUCTION 
Rayleigh-Bernard (R-B) convection is a classical problem of fluid mechanics, where the viscous 
fluid is flowing in between two parallel walls, while upper wall is usually cooled and lower is 
heated. The reason for flow appearance is temperature gradient in vertical direction which causes 
instability of density distribution in layers of the fluid, and thus movement. Solution to this 
problem has been described by Rayleigh. It is related for case where fluid is in gravitational field 
limited at the top and bottom sides, by horizontal walls with constant but respectively different 
temperatures. As a result, he got critical value of dimensionless parameter at which flow of the 
fluid starts. This parameter is called Rayleigh number and it is determined as: 
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where g is gravitational acceleration, β Thermal expansion coefficient, T1 upper plate 
temperature, T2 lower plate temperature, H distance between two plates, ν kinematic viscosity and 
a thermal diffusion coefficient. In the above equation, fluidproperties are applicablefor average 
fluid temperature Tm=(T1+T2)/2, because this is the best reference temperature. In this case T1 is 
the variable in time and in x-direction, and so is the Ra number. Ra is dimensionless parameter 
and it represents relation between thrust and diffusion forces. 
Critical value of Rayleigh number is, according to linear stability theory, Rac=1708, for critical 
wave number qc=3.117. Below this number fluid starts to flow and forms two-dimensional 
vorticity cells with approximately squared cross section. As Ra rises, cell flow becomes 
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significantly complex. Two-dimensional cells break apart into tree-dimensional cells with 
hexagonal shape, seen from above. With further increase of Ra cells divides, oscillates and 
becomes turbulent.  
Analysis of R-B convection is applied under the assumption of small temperature differences 
between the walls, and that the assumption of Oberbeck-Boussinesq approximation applies. This 
means that all properties of the fluid are constant except density, which is represented as a linear 
function of temperature:  

( )[ ]22 TT1 −β−ρ=ρ  

where ρ2is fluid density at the lower plate, T is fluid temperature.  
In this paper, fluid flow has been analyzed. Rayleigh number is considered to be under critical 
value, while wave number being very close to critical value. Numeric simulation is obtained using 
two-dimensional Navier-Stokes equations in the form of vorticity stream-functions of flow, with 
constant temperature at the lower and spatial modulation of temperature at the upper wall. 
Inclination is considered to be small. 
2. MATHEMATICAL MODEL 
Deriving of equations and description of the numerical process of resolving of the equations that 
describe the non-isothermal flow of viscous, compressible fluid is as follows: 
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The above equations represent the law on maintaining momentum, matter and thermal energy. 
We want to solve these equations in the form of stream function – vorticity. Vector of the fluid 
velocity can be represented as a rotor ofthe vector stream function, while the vorticity vector can 
be represented as a rotor of the velocity vector of the fluid, respectively, 

= = ∇×
 v rotψ ψ  

= = ∇×
  rot v vω  

If we want to determine the rotor impulse equation, that is, if the momentum vector equation is 
multiplied with nabla (Hamilton) operator, we obtain the transport equation of vorticity 
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The member in parentheses represent the definition of a vorticity vector, while another member 
on the right side is equal to zero, because the gradient rotor of any scalar function is by definition 
equal to zero.  
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In the impulse equation, the force per unit mass for the case of fluid flow between two parallel 
plates inclined at an angle relative to the horizontal plane can be written as  

sin cos= = +
  F g g i g jγ γ  

Taking into account the linear density dependence on temperature only in the member that 
represents the force in the impulse equation  
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Oberbeck-Businesc approximation of this equation is obtained.  
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For us it is interesting to see how the rotor of the vector force acting on the fluid small parts is 
determined 
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By substituting this last equation for vorticity transport equation, we get the following expression 
for it 

 
In this equation, γ represents an angle of inclination of the plate relative to the horizontal plane, 
measured in a positive direction, i.e. in the direction counter clockwise from the positive part of 
the x-axis. If both plates in vertical position are at an angle γ=π/2, the previous equation reduces 
to the form 

 
If the plates that are parallel to each other are in a horizontal position, the convection-diffusion 
equation of transport of vorticity becomes 

 
The system of equations to be solved now becomes 

 
We cannot use the second equation, or the equation of continuity, i.e. the law of maintenance of 
mass (substance), in the formulation of stream function - vorticity, because this equation is 
identically equal to zero, as 

. 
3. NUMERICAL SIMULATION 
Numerical solution is achieved by translation of physical to dimensionless computational domain 
where domain of the process is changing as well. This form is suitable for use of Fourier-
Chebyshev approximation.  
Results of the simulation shows that convection appears in the form of usual two-dimensional 
vorticity cells. For heated fluid where Ra> Rac, stable patterns appears in the range of wave 
numbers closely grouped around critical wave number qc. Within a boundary of stable range, cell 
dimensions do not correspond to the critical value of wave number q, but corresponds to the 
space and time distributions of boundary condition. Stable range is limited by instabilities from 

the both sides. Those instabilities strive to 
change the vorticity cells wave number, but 
not their shape.  
Since obtained cells have wave number that 
does not match the stability range, 
instability occurs shifting their dimensions 
towards critical values. As the Ra rises, a 
vorticity cell becomes unstable and the 
structure of convection converges by very 
complex space and time distribution 
pattern. 

 
 
 

 
Figure 1. Example of dimensionless stream function 

field at compulsive R-B convection 
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Figure 2. Example of dimensionless vorticity 

field at compulsive R-B convection 

 
Figure 3. Example of dimensionless velocity 

field at compulsive R-B convection 
4. CONCLUSION 
In this paper compulsive Rayleigh-Bernard convection has been examined. Beside temperature 
gradient, modulation on the upper fluid plate , withamplitude δm and two different wave numbers 
qm1 andqm2, has been applied. While at conventional case of Rayleigh-Bernard convection pattern 
of the vorticity cells becomes unstable or critical value Ra being close to wave number qc, 
compulsive convection have wave number value qm2 for any Ra. The vorticity cells are affected by 
different mechanisms of destabilization. In the case of the inclined walls, the destabilization 
appears almost immediatelly, even for small values of the inclination angle γ. 
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