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ABSTRACT: The author, based on the mentioned references, started to improve the now-today applied 
relations on the heat distribution problem. The paper offers a better approach concerning not only on the 
temperature distribution along a straight bar, heated in its lower end, but also on the output heat flow 
evaluation, too. Contrary to the general accepted (but unfortunately inaccurate in the most cases) hypothesis 
of the constant (invariable) value of the parameter m, defined in relation (7), the author propose a new and 
practical numerical evaluation of this parameter, based on an original experimental strategy. One other 
significant contribution of the present paper consists in an original methodology, concerning on the )z(nα  
local heat transfer coefficient calculation for the non-isothermal bar. In the next period the author intend 
to focus his theoretical and experimental investigations on the improvement of the above-mentioned m 
parameter determination, both for small and large values of the so-called massivity, denoted by the ratio 

A/P . 
Keywords: heat distribution, straight bar, heat flow, local heat transfer coefficient, massivity 
 
 
1. THEORETICAL APPROACH 
Let us consider (see Figure 1, a) a straight bar 2, having constant A cross-sectional area with 
perimeter/circumference P and length  , connected - along the normal direction - to the plane 
surface S of the body B at the level AO. The origin O of the axes ,1z 2z represents the centre of 
gravity of the cross-sectional area A of the bar. The axis 1z correspond to the negative direction of 
the gravitational acceleration vector g , the 2z
represents the longitudinal direction of the bar and 
their angular disposition is denoted by gα . The 

temperature of the body’s surface S  is St , of the 

surface AO is Ot , respectively of the undisturbed 

ambient is at . The body B  and the bar 2 are in 
thermal contact each to other and with the 
surrounding ambient, too.  
Well-known facts are the following: 
≡ when aS tt 〉  than the body transfers heat to the 

ambient, and 
≡ when aS tt 〈  than the body receives heat from the 

ambient. 
 

 
Figure 1. The conceptual schema 
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In the following, the first case ( aS tt 〉 ) will be considered, when the body B will transfer heat to the 
ambient in two ways: 
≡ By a direct transfer through the free surface Of ASS −=  of the body, (having a free heat 

convection flow with given velocity and temperature fields), as well as 
≡ By entering on the surface OA  of the lower end of the bar and after than by: 

 Passing through of the bar and leaving/outrunning at its free upper end uA , having 

magnitude of )(QQ u ′′≡′′ and 

 Passing through the surface nA  of the bar’s nappe, with a magnitude of nQ ′′ . 
In the mentioned references one can find formulas concerning both the temperature and the output 
heat flow evaluation of the bar too, based on the following hypothesises: 
≡ One has a long-enough bar; 
≡ The temperature t of the bar, respectively of the heat transfer coefficient nα of its nappe depend 

exclusively of the coordinate, i.e.: )z(t  and )z(nα . 
Considering the elementary bar from Figure 1b located at distance z  from the lower end of the bar 
and having length dz , one can obtain successively: 
≡ the input heat flow )z(Q′ at the surface IA  

;
dz

)z(dt
A)z(Q ⋅⋅λ−=′                                (1) 

≡ the outrunning heat flow )dzz(Q +′′  through the surface IIA  

;
dz

)dzz(dt
A)dzz(Q

+
⋅⋅λ−=+′′                           (2) 

≡ the outrunning heat flow )z(Qd ′′  through the surface ndA  

[ ],t)z(tdA)z(Qd annn −⋅⋅α=′′                           (3) 

where: λ  is the thermal conductivity of the bar; nα - The heat transfer coefficient of the bar’s 
nappe. 
Based on the principle of the energy conservation (∑ ∑ ′′=′ QQ ), as well as on the above-
mentioned equations, one can obtain successively 

);z(Qd)dzz(Q)z(Q n′′++′′=′  

[ ].t)z(tdA
dz

)dzz(dt
A

dz
)z(dt

A ann −⋅⋅α+
+

⋅⋅λ−=⋅⋅λ−            (4) 

One can consider:  

,dz
dz

)z(dt
)z(t)dzz(t ⋅+=+  

From where: 

,dz
dz

)z(td
dz

)z(dt
dz

)dzz(dt
2

2

⋅+=
+

 

and: 
  dzPdA n ⋅= .                                            (5) 

By substituting them into the equation (4), one obtains 

  [ ].t)z(t
A
P

dz

)z(td
a

n
2

2

−⋅
λ
α
⋅=                                           (6) 

Supplementary, by introducing the used symbol in literature (see the mentioned references) 

  ,
A
P

m n

λ
α
⋅=                                     (7) 

The equation (6) becomes 

  [ ].t)z(tm
dz

)z(td
a

2
2

2

−⋅=                             (8) 
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Considering the relative temperature of the bar  
[ ],t)z(t)z(t ar −=                                      (9) 

The equation (8) becomes 

),z(tm
dz

)z(td
r

2
2

r
2

⋅=                                     (10) 

Because the derivative of the ambient temperature is .0
dz

dt a =  

Taking into the consideration the .constm =  hypothesis, the general solution of the equation (10) 
will be 

  ,ecec)z(t)z(t zm
2

zm
1er

⋅−⋅ ⋅+⋅==                                  (11) 
Where: the sub-index  e  denote the estimated value and  

21 c,c  are constants, which have to be determined by imposing adequate boundary conditions. 
In the case of an ideal heat connection between the bar 2 and the body B, the above-mentioned 
conditions become: 

≡ for 0z = :  ;tcc;ttt;ttt)0(t)0(t;t)0(t r,s21asr,sasaes =+−=−=−==           (12) 

≡ for =z :   ,)(t
dz

dt
)( eu

z

e 


⋅α=⋅λ
=

             (13) 

where: )(λ  represents the thermal conductivity coefficient of the bar at its upper end; 
  uα   - The heat transfer coefficient of the bar at its upper end. 
From the equation (11), by introducing the notation  

  
u

um2

m)(

m)(
ec

α−⋅λ
α+⋅λ

⋅= ⋅⋅



 ,                        (14) 

The boundary conditions (13) became 
  .ccc 12 ⋅=                        (15) 

Finally, from equations (12) and (15), one can obtain 

  ;
c1

1
tc r,s1 +

⋅=                (16) 

  .
c1

c
tc r,s2 +

⋅=                (17) 

2. METHODS 
There are two methods in order to determine the outrunning heat flow from the bar. 
a. The first one is based on the fact that the outrunning heat flow should be equal with the input 
one )0(Q′ , which enters at the lower end level of the bar (through the section OA ): 

.
dz
dt

A)t()0(Q
0z

s
=

⋅⋅λ−=′              (18) 

Considering  

 ,)cc(m
dz

)z(dt

dz
)z(dt

21

0z

e

0z

−⋅==
==

                (19) 

Relation (18) became 
  .A)t()cc(m)0(Q s12 ⋅λ⋅−⋅=′             (20) 

b. The second method requires that the outrunning heat flow from the bar, by heat transfer, can 
be established using the relation 

,QQQ nu ′′+′′=′′                                                       (21) 
where 

)(tAQ euu ⋅⋅α=′′       (22) 
Represents the amount of the outrunning heat flow by heat transfer at the upper end of the bar; 
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∫∫ ⋅⋅α=′′
nA

nenn dA)z(t)z(Q             (23) 

Is the amount of the heat flow passing through the bar’s nappe by heat transfer; 

uα - The local heat transfer coefficient at the upper end of the bar; 

)z(nα  - The local heat transfer coefficient of the nappe of the bar.  
Considering relation (5), relation (23) became  

 .dz)z(t)z(PQ
0 enn ∫ ⋅⋅α⋅=′′


                                    (24) 

The author, based on his investigations in the literature, didn’t find any result or references 
concerning on the )z(nα  local heat transfer coefficient calculation for the non-isothermal bar.   
Supposing an .constm = , from equation  (7) can be expressed 

,
P
A

m)z( 2
n λ⋅⋅=α                       (25) 

And consequently the equation (24) became 

  .dz)z(t)z(AmQ
0 e

2
n ∫ ⋅⋅λ⋅⋅=′′



                (26) 

Also, the )(zλ  thermal conductivity coefficient of the bar can be expressed 

  ,)z(tc)z(tba)z( 2⋅′+⋅′+′=λ                   (27) 
where the coefficients c,b,a ′′′  depend on the quality of the bar’s material, which can be 
determined applying the Minimal Square Errors Method (MSEM) on a set of numerical data-pairs 
from Thermo-dynamical tables 

{ })i(),i(t λ , for [ ]ni ,1∈ . 
Introducing the function 

  ,)z(t)z()z(f e⋅λ=               (28) 
Relation (26) became 

  .dz)z(fAmQ
0

2
n ∫ ⋅⋅⋅=′′



                (29) 

Taking into the consideration that 
  ae t)z(t)z(t += ,                         (30) 

The relation (28) finally became 

  
).z(tc)z(tb)z(ta

)z(tc)z(t)tc2b()z(t)tctba()z(f
3
e0

2
e0e0

3
e

2
eae

2
aa

⋅′+⋅′+⋅′=

=⋅′+⋅⋅′⋅+′+⋅⋅′+⋅′+′=
                    (31) 

Also, one has to take into consideration that )z(t e is given by the relation (11) and its second and 
third powers can also be expressed, consequently, the function (31) finally will obtain the 
expression 

( )
( ) .eccecbeccc3caccb2

eccc3caecbecc)z(f
zm33

10
zm22

10
zm

2
2
1010210

zm2
21020

zm22
20

zm33
20

⋅⋅⋅⋅⋅

⋅−⋅⋅−⋅⋅−

⋅⋅′+⋅⋅′+⋅⋅⋅′⋅+⋅′+⋅⋅′⋅+

+⋅⋅⋅′⋅+⋅′+⋅⋅′+⋅⋅′=
  (31) 

In order to establish the final expression of relation (29), one has to determine the integral 

( ) ( ) ( ),1a1a1aa1
1

a1
1

a1
1

adz)z(f 3
7

2
654322

0
31 −χ⋅+−χ⋅+−χ⋅+⋅+








−

χ
⋅+








−

χ
⋅+








−

χ
⋅=⋅∫ 



    (32) 

where the introduced notations have the following expressions:  
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a

3
20

1 ⋅
⋅′

−= ; ;
m2

cb
a

2
20
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⋅′

−=  ;
m
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2
21020

3
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                      ;
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3. FINAL REMARKS AND CONCLUSIONS  
In the mentioned literature, the relation (20) is applied, but the method, based on the relation (21), 
is missed.  
Another missed item in the used literature is the numerical determination of the parameter m, 
which query definitively the practical use of the mentioned theoretical approach (20). 
The hypothesis of .constm =  along the constant cross-sectional bars one can be accepted only for 

the relatively small values of the ratio 
A
P , namely for the  solid/massive cross-sections (e.g.: circular 

cross-section). 

Oppositely, for the tubular cross-sections, where the ratio 
A
P  presents much higher values, the 

above-mentioned hypothesis of .constm =  one has to be verified by further searching examination.  
This case is widely used in civil engineering structures and the fire-safety analysis of them 
represents a very important topic of the engineers. 
Consequently, the further goals of the author consist in: 
≡ the experimental establishing of the bar’s temperature field (in several discrete points, along its 

longitudinal axis); 
≡ deeply analysis even the condition .constm =  can be accepted in every particular case, namely 

if for every case one can find precise value for m, which can assure a suitable temperature 
estimation of the bar, based on the relation ae t)z(t)z(t += , in comparison with the effective 
measured values; 

≡ establishing useful correlations between the magnitudes of the ratio 
A

P  and of the parameter m  

along the bar; 
≡ statistically accepted large number of temperature measurements, destined to estimate the 

probable law of the parameter m, corresponding to factual cases of bars and depending on 
several environmental parameters. 
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