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ABSTRACT: The principal aim of this paper is to investigate the thermoelastic problems in a thick annular 
plate subjected to sectional heat supply on the upper surfaces whereas the fixed circular edges are at zero 
temperature. The governing heat conduction equation has been solved by using integral transform 
technique. The results are obtained in series form in terms of Bessel’s functions. The results for displacement 
and stresses have been computed numerically and illustrated graphically. 
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1. INTRODUCTION   
As a result of the increased usage of industrial and construction materials the interest in the thermal 
stress problems has grown considerably, typified by the annular fins of heat exchangers and brake 
disc rotors, because of its elementary geometry. Therefore, a number of theoretical studies 
concerning them have been reported so far. For example, Nowacki [6] has determined steady-state 
thermal stresses in circular plate subjected to an axisymmetric temperature distribution on the 
upper face with zero temperature on the lower face and the circular edge. The direct thermoelastic 
problem in an annular fin is studied by Wu [10] investigates the transient thermal stresses in an 
annular fin with its base subjected to a heat flux of a decayed exponential function of time. 
Wankhede [11] has determined the quasi-static thermal stresses in thin circular plate subjected to 
arbitrary initial temperature on the upper face with lower face at zero temperature and the fixed 
circular edge thermally insulated. Gogulwar and Deshmukh [3] solved the inverse problem of 
thermal stresses in a thin annular disc, which was further generalized [2] in direct problem. Chiu 
and Chen [1] investigated stress-field in an annular fin of temperature-dependent conductivity 
under a periodic heat transfer boundary condition is analyzed by the Adomian's decomposition 
method. Recently Ootao et al. [8] performed analysis of a three-dimensional transient thermal stress 
problem is developed for a nonhomogeneous hollow circular cylinder due to a moving heat source 
in the axial direction from the inner and /or outer surfaces. In this paper, our attempt has been 
made to discuss quasi-static transient thermal stresses in a thick annular plate bra ≤≤  ,

hzh ≤≤−  and the result illustrated numerically and graphically by using integral transform 
technique. No one previously studied such type of problem. This is a new contribution to the field.  
2. FORMULATION OF THE PROBLEM  
Consider a thick annular plate of thickness 2h, occupying a space D defined by ,bra ≤≤

hzh ≤≤− . Let the plate be subjected to a transient asymmetric temperature field on the axial 
direction & axisymmetric temperature field on the radial direction of the cylindrical coordinate 
system. Initially the plate is kept at zero temperature the arbitrary heat flux λ/)r(Qf  is prescribed 
over the upper surface (z = h) and the lower surface (z = -h) the fixed circular edge (r = a and r 
= b) are at zero temperature. Assume the upper and lower surface of thick annular plate are 
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traction–free surface under this realistic prescribed condition the quasi-static transient thermal 
stresses are required to be determined. 
2.1. Temperature distribution 
The transient heat conduction equation is given as follows  
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in which thermal diffusivity of the material of the plate is denoted as ,C/ρλ=κ λ  being the thermal 
conductivity of the material, ρ  is the density and C  is the calorific capacity, assumed to be constant, 
subjected to the initial and boundary conditions as 

0T = at 0t =                                                                  (2) 
0T = at ,ar = hzh ≤≤−  , 0t >                                                (3) 
0T = at ,br = hzh ≤≤−  , 0t >                                                (4) 
0T = at ,hz −= bra ≤≤  , 0t >                                                (5) 
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2.2. Thermal displacements and thermal stress      
The Navier’s equations in the absence of body forces for axisymmetric two-dimensional 
thermoelastic problem can be expressed as [5] 
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where ru  and zu  are the displacement components in the radial and axial directions, respectively 
and the dilatation e as 
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The displacement function in the cylindrical coordinate system are represented by the Goodier’s 
thermoelastic displacement potential φ and Love’s function L as [4] 
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in which Goodier’s thermoelastic potential must satisfy the equation 
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and the Love’s function L must satisfy the equation 
0)L( 22 =∇∇                                                                 (10) 
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The component of the stresses are represented by the use of the potential φ  and Love’s function L 
as 
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in which G  and υ  are the shear modulus and Poisson’s ratio respectively. 
The boundary condition on the traction free surface stress functions are 

0rzrr =σ=σ at hz ±=                                                       (12) 
Equations (1) to (16) constitute the mathematical formulation of the problem. 
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3. SOLUTION OF THE PROBLEM 
3.1. Solution for Temperature distribution 
Applying Laplace transformation [9] of the equation (1) to (6) with respect to t and using the 
equation (2) one obtain 
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with boundary condition 
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0T =   at hz −=                    (15) 
0T =  atr = a andr = b                        (16) 

where  p is Laplace transform parameter and T  Laplace transform of T 
Introducing theHankel transform over the variable r and its inverse transformation defined [7] as 
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and .., 21 αα are roots of the transcendental equation 0)a,(R m0 =α with )x(Jn  is the Bessel function 

of the first kind of order n and )x(Yn  is the Bessel function of the second kind of order n. 
Applying the finite Hankel integral transform, and its inversion theorems for both transforms, yield 
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and )(f mα  is the Hankel transform of )r(f . 
3.2. Solution for thermal stresses 
(a) Goodier thermoelastic displacement potential φ. 
Referring to the fundamental equation (1) and its solution (18) for the heat conduction problem, 
the solution for the displacement function are represented by the Goodier’s thermoelastic 
displacement potential φ  governed by equation (9) are represented by  
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(b) Love’s function L 
Similarly, the solution for Love’s function L are assumed so as to satisfy the governed condition of 
equation (12) as 
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in which mnH  and mnR  are arbitrary unknown functions 
(c) Displacement and Thermal stresses  
In this manner, two displacement functions in the cylindrical coordinate system φ and L are fully 
formulated. Now, in order to obtain the displacement components, we substitute the values of 
thermoelastic displacement potential φ  and Love’s function L in equations (9) and (10), one obtains 
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(d) Determination of unknown arbitrary function mnH and mnR  
Applying boundary condition (17) to the equation (25) and (28) one obtains  
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4. SPECIAL CASE AND NUMERICAL CALCULATIONS 
Setting   

)br)(ar()r(f 2222 −−=      (45) 
Applying finite Hankel transform as defined in equation (21) to the equation (45), one obtain 
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5. NUMERICAL CALCULATIONS 
The numerical calculation have been carried out for (SN 50C) plate with the parameters a = 1m, b 
= 2m, h = 0.3m, thermal diffusivity )sm(10*9.15k 126 −−=  and Poisson ratio v = 0.281 with  

7040.15,5614.12,4182.9,2734.6,120.3 54321 =α=α=α=α=α  being the Positive roots of 

transcendental equation 0)a,(R m0 =α  For convenience setting ,10/QKA 5πλ= 510/GQK2B πλ=  in the 
expression (3.39) to (3.44) The numerical expression for temperature, displacement and stress 
components are obtained by equations (34) and (37) to (42).In order to examine the influence of 
heat flux on the upper and lower surface of thick plate, one performed the numerical calculations 
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r = 1, 1.2, 1.4, 1.6, 1.8, 2 m and z =- 0.3, -0.15, 0, 0.15, 0.3 m. and t = 5, Numerical variations 
in radial and axial directions are shown in the figures. 
6. CONCLUDING REMARKS 
In this study, we have treated thermoelastic problem of a thick annular plate which is considered 
traction free. We successfully established and obtained the expressions for temperature 
distribution, displacement and stress function due asymmetric arbitrary heat flux. Then, in order 
to examine the validity of boundary value problem, we analyze, as a particular case with 
mathematical model for )br)(ar()r(f 2222 −−= and numerical calculations were carried out. The 
thermoelastic behavior is examined such as temperature, displacement and stresses with the help 
of arbitrary heat flux at upper surface applied.  

 
Figure 1: Axial displacement profile along axial 

direction 

 
Figure 2: Radial displacement profile along axial 

direction 
Figure 1 shows the axial displacement uz occurs at the center i.e. r = 1.5 in radial direction where 
as in radial direction decreases from lower surface to upper surface.  
As shown in Figure 2 the variation of thermal stress in the radial displacement ur decreases from 
inner circular surface to outer circular surface in radial direction where as in axial direction it take 
place at upper and lower surfaces of the plate. 

 
Figure 3: Radial stress distribution along radial 

direction 

 
Figure 4: Radial stress distribution along axial 

direction 
Figure 3 and 4 shows the radial stress function 
σrr develops tensile stress at upper and lower 
surface of the plate, where as it develop 
compressive stress in the middle of plate.  
Figure 5 shows the variation of the stress 
function σθθdevelops tensile stress at the upper 
and lower surface of the plate where as it 
develops compressive stress in the middle of 
plate. We may conclude that the system of 
equations proposed in this study can be adapted 
to design of useful structures or machines in 
engineering applications in the determination 
of thermoelastic behavior at every instant and 
at all points of thick annular disc of finite 
height. 

 
Figure 5: Tangential stress distribution along radial 

direction 
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