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Abstract: In this paper, Homotopy Perturbation Method (HPM) is applied to find the approximate solutions of ZK 
equations. It is proved that the HPM gives a powerful tool for solving a large number of nonlinear partial 
differential equations in mathematical physics. The solutions obtained by HPM are presented graphically. 
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INTRODUCTION 
The investigation of the travelling wave solutions for nonlinear partial differential equations plays an 
important role in the study of nonlinear physical phenomena. Most scientific problems and phenomena 
in different fields of sciences and engineering occur nonlinearly. Except in a limited number of these 
problems are linear. Nonlinear wave phenomena appear in various scientific and engineering fields, 
such as fluid mechanics, Nano-Bioelectronics, plasma physics etc. Nonlinear wave phenomena of 
dispersion, dissipation, diffusion, reaction and convection are very important in nonlinear wave 
equations. One of the models is represented by the ZK equation. The Zakharov-Kuznetsov equation was 
introduced as an asymptotic model in [1] to describe the propagation of nonlinear ionic-sonic waves in 
magnetized lossless plasma in two dimensions. The physical phenomenon for this equation was 
investigated in [2-3]. A large number of evolution equations in many areas of applied mathematics, 
physics and engineering appear as a nonlinear wave equation. Most nonlinear equations are difficult to 
solve analytically, especially the ZK equation.  
In recent years, many powerful methods are developed to find the exact solutions of the ZK equations 
such as tanh method, (G/G’) method etc. [4-12]. In this present work, approximate solutions of two 
different types of ZK equation namely ZK (2, 2, 2) and ZK (3, 3, 3) are found by using the homotopy 
perturbation method. The homotopy perturbation method (HPM) was first proposed by He [13]. The 
HPM does not depend on a small parameter in the equation. Using homotopy technique in topology, a 
homotopy is constructed with an embedding parameter p∈[0,1] which is considered as a small 
parameter. Recently, many researchers do a lot of significant work about the application and the 
potential of homotopy perturbation method. The results are also shown graphically on mathematica. 
HOMOTOPY PERTURBATION METHOD (HPM) 
Consider the following non-linear differential equation             

 A(u)− f(r)= 0  r ∈ Ω,                         (1) 
with the boundary conditions  

 B (u, ∂u/∂n) =0 r∈ Γ.             (2) 
while A, B, f(r) and Γ are differential operator, boundary operator, known analytic function and the 
boundary of the domain Ω, respectively. 
The operator A(u) can be divided into a linear part L(u) and a non-linear part N(u). 
Therefore Eq. (1) can be rewritten as: 

L(u)+ N(u)− f(r)= 0.      (3) 
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In case the nonlinear Eq. (1) has no small parameter, we can construct the following homotopy 
H (v, p) = L(v) - L(u0)+ p L(u0 )+ p[N(v) - f(r)] = 0.    (4) 

where p is called homotopy parameter. 
According to the homotopy perturbation method, the approximation solution of Eq. (4) can be expressed 
as a series of the power p, i.e. 

u = lim
p→1

 (uo+u1+u2+u3+…).           (5)  

when Eq. (5) corresponds to Eq. (4), becomes the approximate solution of Eq. (1). 
NUMERICAL APPLICATIONS 
In this section, we apply HPM for solving two different types of equations namely ZK (2, 2, 2) and ZK (3, 
3, 3) with specific initial conditions. The results obtained from HPM are very effective and reliable. 
Example 1: Consider the following ZK (2, 2, 2) Equation 
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In operator form Eq. (6) can be written as 
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Let the solution of the Eq. (6), according to HPM be 
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Putting Eq. (10) into Eq. (9) 
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Equating powers of p     
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and so on. The series solution of Eq. (6) is  
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Example 2. Consider the following ZK (2, 2, 2) Equation 
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In operator form Eq. (12) can be written as 

 
Figure 1. Graphical representation of 

approximate solution in the domain )5.0,0(t ∈
and )1,0(∈x when 9.0y = and 001.0=λ . 
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Taking inverse operator, we get 
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According to the above described procedure, we have 
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Consequently, we have 
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and so on. The solution of Eq. (12) is 
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Example 3. Consider the following ZK (3, 3, 3) Equation 
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Operator form of Eq. (17) can be written as 
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According to HPM procedure, we have 
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Consequently, we have 
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and so on. The solution of Eq. (17) is
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Figure 2. Graphical representation of approximate 

solution in the domain )1.0,1.0(t −∈ and
)1,1(−∈x when 9.0y = , 001.0=λ . 

 
Figure 3. Graphical representation of 
approximate solution in the domain 

)5,5(t −∈ and )30,30(x −∈ when 9.0y =
and 001.0=λ . 
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Example 4. Consider the following ZK (3, 3, 3) Equation 
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According to the above defined procedure, we have 
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and so on. The series solution of Eq. (22) is 
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CONCLUSION 
In this paper, we have used the Homotopy Perturbation 
Method (HPM) to derive the analytical approximate solutions 
of Zakharov-Kuznetsov (ZK) equation, especially for ZK (2, 2, 

2) and ZK (3, 3, 3) equations with initial conditions. The results obtained from the proposed method are 
very accurate, efficient and reliable showing that HPM is very effective and powerful for solving the 
nonlinear partial differential equations. To reveal the convergence of the HPM, the results of the 
numerical example are presented and only few terms are required to obtain accurate solutions. These 
approximate solutions may provide a useful help for physicists to study more complex physical 
phenomena. Graphical representation depicts the compatibility of the proposed method with such 
complexity problems. 
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 Figure 4. Graphical representation of 
approximate solution in the domain 
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