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Abstract: In this article, a truncated Taylor–Maclaurin series was used in Rayleigh–Ritz method to analyze the free 
vibration of a rectangular thin orthotropic plate bounded by three simply supported edges and one clamped edge 
(i.e. SSSC plate). The total potential energy functional (which is a function of the strain energy and kinetic energy 
of a free vibrating plate), was derived from the theory of elasticity. Taylor–Maclaurin series truncated at the fourth 
term was used to obtain a shape function which satisfied all the boundary conditions of an SSSC plate under free 
vibration. The shape function was substituted into the total potential energy functional, and the resulting equation 
was eventually minimized. The equation for the fundamental frequency was then derived from the minimized 
equation, and fundamental frequencies computed for different aspect ratios, p (varying from 0.1 to 2.0 in steps of 
0.1) and different flexural rigidity ratios, φ. The results show that the average percentage differences in the values 
of the fundamental frequency for flexural rigidity ratios, φ1, φ2, and φ3, are −3.404%, −2.029%, and −2.456%. 
Hence, the displacement function obtained for the SSSC plate is a very good approximation of the exact shape 
function for the plate. 
Keywords: Orthotropic Plate, Rayleigh-Ritz Method, Rectangular Plate, Taylor-Maclaurin Series, Free Vibration 
 
INTRODUCTION 
Thin rectangular plate elements used in engineering structures are often subject to free vibration. Thus, 
it is important to determine the vibration characteristics of thin rectangular plates undergoing free 
vibration. 
Many researchers have carried out investigations on vibration of thin orthotropic plates. Hearmon [3] 
proposed an approximate general solution based on Rayleigh method for the free vibrations of 
orthotropic plates. Leissa [6] presented the accurate analytical results for free vibrations of orthotropic 
plates for cases having two opposite sides simply supported and others with possible combinations of 
clamped, simply supported, and free edge conditions. According to Meirovitch [7], the Rayleigh–Ritz 
method is one of the most popular methods used for obtaining approximate solutions for the 
fundamental frequencies of an orthotropic rectangular plate due to its high versatility and simplicity. 
Wu et al. [9] proposed a novel Bessel function method for deriving exact solutions to free vibration 
problems of rectangular thin plates. Chakraverty [2] gave higher modes of vibrations for plates of 
various shapes and boundary conditions. Xing and Liu [10] used separation of variables for obtaining 
exact solutions for the free vibration of thin orthotropic rectangular plates, with all combinations of 
simply supported and clamped boundary conditions.   
Although a lot of researches have been done on plates, none of the researchers used Taylor’s series 
function in Rayleigh–Ritz method to obtain the fundamental frequencies of thin orthotropic rectangular 
SSSC plate subjected to free vibration. This work used Taylor’s series function in Rayleigh–Ritz method 
in formulating the deflection function, which in turn was used to obtain total potential energy function. 
Then, the total potential energy was used to obtain the fundamental frequency of rectangular 
orthotropic thin plate bounded by three simply supported edges and one clamped edge (i.e. SSSC plate) 
under free vibration.    
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MATHEMATICAL FORMULATIONS 
Shape Function 
Taylor-Maclaurin series can be used to obtain the shape function of a rectangular plate. Ibearugbulem 
[4] expressed the shape function as: 

w = w(x, y) = ∑  ∑ F(m)(x0).F(n)(y0)
m!n!

∞
n=0

∞
m=0 (x − x0)m. (y − y0)n                                (1) 

where F(m)(x0) is the mth partial derivative of the function with respect to x, F(n)(y0)is the nth partial 
derivative of the deflection, w, with respect to y. The terms, m! and n!, are the factorials of m and n, 
respectively, while x0 and y0 are the co-ordinates of the origin. By truncating the infinite series at m = n 
= 4, the Eq. (2) is obtained. 

w = ∑  ∑ ImJn4
n=0

4
m=0 xmyn                                                                            (2) 

Transforming the x-y coordinate system to R-Q coordinate system yields: 
R = x a⁄ ;   Q = y b⁄                                                                                    (3) 

where R and Q are dimensionless quantities, and ‘a’ and ‘b’ are the dimensions of the plate along the x- 
and y-axes, respectively. Therefore: 

x = aR;   y = bQ                                                                                       (4) 
am = Imam;  bn = Jnbn                                                                                 (5) 

Substituting Eqs. (4) and (5) into Eq. (2) gives the shape function as: 
w = ∑  ∑ ambn4

n=0
4
m=0 RmQn                                                                            (6) 

The shape function given by Eq. (6) can be expanded further in the following form: 
w(R, Q) = (a0 + a1R + a2R2 + a3R3 + a4R4)(b0 + b1Q + b2Q2 + b3Q3 + b4Q4)            (7) 

where ai and bi (i = 0, 1, 2, 3, 4) are unknown constants of the polynomial series shape function. 
Boundary Conditions of SSSC Plate 
The boundary conditions of the rectangular thin orthotropic plate bounded by three simply supported 
edges and one clamped edge (SSSC plate) shown in Figure 1, have to be taken into consideration in the 
mathematical formulation. Four boundary conditions along the x-axis and four boundary conditions 
along the y-axis are required to obtain a distinct solution for the SSSC rectangular plate. The moments 
at the corners of the simply supported edge are equal to zero since simply supported edges are free to 
rotate. The slope disappears along the corners of the clamped edge because clamped edges are assumed 
to resist rotation. For all the edges of the plate, the deflection at the corners must be zero.  The boundary 
conditions of the SSSC plate are expressed as:  

w(R = 0) = w′′R(R = 0) = 0                                                                         (8) 
w(R = 1) = w′′R(R = 1) = 0                                                                         (9) 
w(Q = 0) = w′Q(Q = 0) = 0                                                                       (10) 

w(Q = 1) = w′′Q(Q = 1) = 0                                                                       (11) 
Substituting one after the other, w(R = 1) = 0 and 
w′′R(R = 1) = 0 into the Eq. (7), and solving the resulting 
simultaneous equations, yields:  

a1 = a4;   a3 = −2a4 
Similarly, substituting successively, w(Q = 1) = 0 and 
w′′Q(Q = 1) = 0, into the Eq. (7) and solving the resulting 
simultaneous equations gives:   

b2 = 1.5b4;    b3 = −2.5b4 
Substituting these parameters into Eq. (7) yields: 

w = AH                                       (12) 
where: 

A = a4b4                                    (13a) 
H = (1.5R2 − 2.5R3 − R4)(Q − 2Q3 − Q4)                                                  (13b) 

The term ‘A’ in Eqs. (12) and (13a) is the amplitude of the deflected shape, while H in Eqs. (12) and (13b) 
is the expression for buckling curve. 
FUNDAMENTAL FREQUENCY EQUATION OF FREELY VIBRATING ORTHOTROPIC PLATE 
Total Potential Energy Functional 
Using the technique proposed by Ibearugbulem et al. [5], the equation for the fundamental frequency of 
the vibrating continuum, was derived by Abamara [1] by employing the principle of conservation of 
energy which allows the strain and kinetic energies of the continuum to be derived from first principles 
using the theory of elasticity. The resulting expressions, are subsequently substituted into the potential 

 
Figure 1: Boundary conditions of SSSC plate 
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energy functional and then minimized to determine the fundamental frequency for the first mode, i.e. M 
= N = 1. Then, the square fundamental frequency, λ2, was made the subject of equation after substituting 
the aspect ratios, p = a/b or p = b/a as the case may be. In the derivation of fundamental frequency, the 
strain energy equation, U, is given as: 

U = Dx
2b2 ∫ ∫ �ϕ1

p3
�∂

2w
∂R2

�
2

+ 2 ϕ2
p
� ∂2w
∂R∂Q

�
2

+ pϕ3 �
∂2w
∂Q2

�
2
� ∂R∂Q1

0
1
0                            (14) 

where U is the strain energy, ϕ1, ϕ2, and ϕ3 are the flexural rigidities of the plate, and p is the aspect 
ratio. The kinetic energy equation is given in Eq. (15) as: 

K. E. = pb2λ2ρh
2 ∫ ∫ w2 ∂R∂Q1

0
1
0                                                            (15) 

where K.E. is the kinetic energy, p is the aspect ratio, λ is the natural fundamental frequency, h is the 
thickness of the plate, and ρ is the mass density of the material. The total potential energy functional, Π, 
is expressed as follows:  

Π = U − K. E.                                                                          (16) 
From Eqs. (14) and (15), Eq. (16) can be re-written as: 

Π = Dx
2b2 ∫ ∫ �ϕ1

p3
�∂

2w
∂R2

�
2

+ 2 ϕ2
p
� ∂2w
∂R∂Q

�
2

+ pϕ3 �
∂2w
∂Q2

�
2
� ∂R∂Q1

0
1
0 − pb2λ2ρh

2 ∫ ∫ w2 ∂R∂Q1
0

1
0        (17) 

Let the flexural rigidities be expressed as: 
ϕ1 = Dx

Dx
= 1                                                                         (18a) 

ϕ2 = B
Dx

                                                                             (18b) 

ϕ3 = Dy
Dx

                                                                              (18c) 
where:  

B = µxDy + 2Dxy = µyDx + 2Dxy                                                      (19) 
Substituting Eqs. (18a) – (18c) into Eq. (17) gives: 

Π = DxA2

2b2 ∫ ∫ �ϕ1
p3
�∂

2H
∂R2

�
2

+ 2 ϕ2
p
� ∂2H
∂R∂Q

�
2

+ pϕ3 �
∂2H
∂Q2

�
2
� ∂R∂Q1

0
1
0 − pA2b2λ2ρh

2 ∫ ∫ H2 ∂R ∂Q1
0

1
0        (20) 

Minimizing the Eq. (20) yields: 
∂Π
∂A

= DxA
b2 ∫ ∫ �ϕ1

p3
�∂

2H
∂R2

�
2

+ 2ϕ2
p
� ∂2H
∂R∂Q

�
2

+ pϕ3 �
∂2H
∂Q2

�
2
� ∂R∂Q1

0
1
0 − pAb2λ2ρh∫ ∫ H2 ∂R∂Q1

0
1
0      (21) 

It should be noted that the minimized equation as given by Eq. (21), is equal to zero. At this point, the 
fundamental frequency, λ2, is made the subject of the equation. The fundamental frequency can be 
determined for aspect ratios, p = a/b and/or p = b/a. In terms of p and b, the square of the fundamental 
frequency becomes: 

λ2 =
Dx
b4ρh ∫ ∫ �ϕ1p4�

∂2H
∂R2�

2
+2ϕ2p2 �

∂2H
∂R∂Q�

2
+ϕ3�

∂2H
∂Q2�

2
�∂R∂Q1

0
1
0

∫ ∫ H2 ∂R∂Q1
0

1
0

                                                 (22) 

In terms of a and b, the square of the fundamental frequency is given by the Eq. (23). 

λ2 =
Dx
a4ρh∫ ∫ �ϕ1�

∂2H
∂R2�

2
+2ϕ2a

2

b2 � ∂2H
∂R∂Q�

2
+ϕ3a

4

b4 �∂
2H
∂Q2�

2
�∂R∂Q1

0
1
0

∫ ∫ H2 ∂R∂Q1
0

1
0

                                             (23) 

In terms of p and ‘a’, the equation for fundamental frequency squared is as follows: 

λ2 =
Dx
a4ρh∫ ∫ �ϕ1�

∂2H
∂R2�

2
+2ϕ2p2�

∂2H
∂R∂Q�

2
+ϕ3p4�

∂2H
∂Q2�

2
�∂R∂Q1

0
1
0

∫ ∫ H2 ∂R∂Q1
0

1
0

                                            (24) 

Similarly, for aspect ratio p = b/a, the λ2 can be expressed in terms of p and a as: 

λ2 =
Dx
a4ρh∫ ∫ �ϕ1�

∂2H
∂R2�

2
+2ϕ2p2 �

∂2H
∂R∂Q�

2
+ϕ3p4�

∂2H
∂Q2�

2
�∂R∂Q1

0
1
0

∫ ∫ H2 ∂R∂Q1
0

1
0

                                               (25) 

3.2 Application of Rayleigh-Ritz Method  
Let the partial differentials of the deflection function, w, in terms of the dimensionless parameters R and 
Q, be expressed as: 

w′R = ∂w(R,Q)
∂R

                                                                                          (26) 

w′′R = ∂2w(R,Q)
∂R2

                                                                                        (27) 
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w′Q = ∂w(R,Q)
∂Q

                                                                                         (28) 

w′′Q = ∂2w(R,Q)
∂Q2

                                                                                     (29) 

w′′RQ = ∂2w(R,Q)
∂R∂Q

                                                                                    (30) 
The double integrals of the squares of w′′R, w′′Q, and w′′RQ are calculated and given by the Eqs. (31) – 
(34). 

∫ ∫ (w′′R)2 ∂R∂Q1
0 = A2(1.8)(0.049206) = 0.088571A21

0                                         (31) 

∫ ∫ (w′′Q)2 ∂R ∂Q1
0 = A2(4.8)(0.007539683) = 0.0361905A21

0                                   (32) 

∫ ∫ (w′′RQ)2 ∂R ∂Q1
0 = A2(0.48571)(0.085714) = 0.0416321A21

0                                 (33) 

∫ ∫ w2 ∂R∂Q1
0 = A2(0.04920635)(0.007539) = 0.00037096667A21

0                           (34) 
Substituting these values into the fundamental frequency equation fundamental frequency for p = a/b, 
as: 

λ2 =
Dx
b4ρh�0.088571ϕ1p4+0.0416321∗2ϕ2p2 +0.0361905ϕ3�

0.00037096667
                                                 (35) 

The Eq. (35) further reduces to: 
λ2 = Dx

b4ρh
�238.757ϕ1

p4
+ 224.452ϕ2

p2
+ 97.557ϕ3�                                            (36) 

Re-arranging Eq. (36) in terms of plate dimension ‘a’ and aspect ratio, p, gives: 
λ2 = Dx

a4ρh
[238.757ϕ1 + 224.452ϕ2p2 + 97.557ϕ3p4]                                      (37) 

In terms of plate dimensions ‘a’ and b, the square of fundamental frequency becomes: 

λ2 =
Dx
a4ρh�0.088571ϕ1+0.0416321∗2ϕ2a

2

b2 +0.0361905∗ϕ3a
4

b4 �

0.00037096667
                                          (38) 

The Eq. (38) reduces further to: 
λ2 = Dx

a4ρh
�238.757ϕ1 + 224.452ϕ2a2

b2
+ 97.557ϕ3a4

b4
�                                      (39) 

Then, for the reciprocal of the aspect ratio, that is, p = b/a: 
λ2 = Dx

a4ρh
�238.757ϕ1 + 224.452ϕ2

p2
+ 97.557ϕ3

p4
�                                         (40) 

where ϕ1, ϕ2, and ϕ3 are as defined in Eqs. (18a) – (18c). 
The square roots of Eqs. (36), (39), and (40) give the required expressions for computing the 
fundamental frequencies, λ, of an SSSC rectangular thin orthotropic plate experiencing free vibration.   
RESULTS AND DISCUSSION  
The square root of Eq. (40) was used to study the variation of fundamental frequency, λ, with various 
aspect ratios, p, and combinations of flexural rigidities, ϕ1, ϕ2, and ϕ3. The results were validated by 
comparing them with solutions obtained by Pilkey [8]. The equations of square of fundamental 
frequency derived by Pilkey [8] for a vibrating SSSC thin rectangular orthotropic plate for p = a/b and α 
= b/a, respectively, are: 

λ2 = 1
b4m�

�237.815Dx
p4

+ 283.61B
p2

+ 97.409Dy�                                                 (41) 

λ2 = 1
a4m�

�237.815Dx + 283.61B
α2

+ 97.409Dy
α2

�                                                 (42) 
where p and α  represent the aspect ratios of the 
plate in terms of a/b and b/a, respectively. 
The results obtained in this work and those of 
Pilkey [8], are presented in Tables 1 – 3. A cursory 
look at Tables 1 – 3, shows that the fundamental 
frequencies, λ, obtained by Pilkey [8] agree very 
closely with the solution obtained in this work for 
various aspect ratios and combinations of flexural 
rigidities, ϕi (where i = 1, 2, and 3). As a matter of 
fact, the maximum percentage difference of 
−5.087% occurred when the aspect ratio, p, is 
equal to 0.8 and the flexural rigidities, ϕ1, ϕ2, and 
ϕ3 are all equal to unity. The average percentage 

 
Figure 2:  Graph of fundamental frequency against aspect 

ratio for various combinations of flexural rigidity 
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differences of the fundamental frequency for flexural rigidity ratios, φ1, φ2, and φ3 in Tables 1, 2, and 3, 
are −3.404%, −2.029%, and −2.456%, respectively.  The closeness of the two results (i.e. results from 
this paper and Pilkey’s solution) increases with increasing aspect ratio, p.  
The graph of fundamental frequency, λ, obtained in this work versus aspect ratio, p = b/a (ranging from 
values 0.3 to 1), was plotted for various combinations of flexural rigidities, ϕi, as shown in Figure 2. 
From Figure 2, it was observed that the frequency, λ, decreased with increasing aspect ratio, p, and 
decreasing flexural rigidities, ϕi. The curves tend to converge as the aspect ratio, p, approaches unity, 
and becomes parallel to the aspect ratio, p, axis. 
 

Table 1: Fundamental frequencies of SSSC plate under free vibration for flexural rigidity, 
φ1 = φ2 =  φ3 = 1, and aspect ratio, p = b/a 

Aspect 
ratio, 

p = b/a 

Fundamental frequency 
squared, λ2 from the 

present work 

Fundamental frequency, λ Difference  
(λ1 − λ2) 

Percentage difference 
�(λ1−λ2)

λ2
�% Present work, 

λ1 
Pilkey’s 

solution, λ2 
0.1 998254 999.127 1001.344 −2.217 −0.221 
0.2 66823.18 258.502 261.168 −2.666 −1.021 
0.3 14776.74 121.560 124.157 −2.597 −2.092 
0.4 5454.402 73.840 76.259 −2.419 −3.172 
0.5 2697.477 51.937 54.137 −2.200 −4.064 
0.6 1614.989 40.187 42.157 −1.970 −4.673 
0.7 1103.141 33.214 34.962 −1.748 −5.000 
0.8 827.6395 28.769 30.311 −1.542 −5.087 
0.9 664.5505 25.779 27.137 −1.358 −5.004 
1.0 560.7760 23.680 24.876 −1.196 −4.808 
1.1 490.8873 22.156 23.211 −1.055 −4.545 
1.2 441.6736 21.016 21.949 −0.933 −4.251 
1.3 405.7263 20.143 20.970 −0.827 −3.944 
1.4 378.6682 19.459 20.196 −0.737 −3.649 
1.5 357.7840 18.915 19.573 −0.658 −3.362 
1.6 341.3196 18.475 19.065 −0.590 −3.095 
1.7 328.1026 18.114 18.644 −0.530 −2.843 
1.8 317.3256 17.814 18.293 −0.479 −2.618 
1.9 308.4180 17.562 17.996 −0.434 −2.411 
2.0 300.9673 17.348 17.743 −0.395 −2.226 

 
Table 2: Fundamental frequencies of SSSC plate under free vibration for flexural rigidities, 

φ1 = 1, φ2 = 0.5,  φ3 = 1, and aspect ratio, p = b/a 
Aspect 
ratio, 

p = b/a 

Fundamental frequency 
squared, λ2 from the 

present work 

Fundamental frequency, λ Difference 
(λ1 − λ2) 

Percentage difference 
�(λ1−λ2)

λ2
�% Present work, 

λ1 
Pilkey’s 

solution, λ2 
0.1 987031.4 993.495 994.238 −0.743 −0.075 
0.2 64017.53 253.017 254.290 −1.273 −0.501 
0.3 13529.79 116.318 117.640 −1.322 −1.124 
0.4 4750.990 68.927 70.208 −1.281 −1.825 
0.5 2248.573 47.419 48.617 −1.198 −2.464 
0.6 1303.251 36.101 37.193 −1.092 −2.936 
0.7 874.1079 29.565 30.544 −0.979 −3.205 
0.8 652.2864 25.540 26.405 −0.865 −3.276 
0.9 525.9999 22.935 23.693 −0.758 −3.199 
1.0 448.5400 21.179 21.841 −0.662 −3.031 
1.1 398.1385 19.953 20.531 −0.578 −2.815 
1.2 363.7389 19.072 19.577 −0.505 −2.580 
1.3 339.3203 18.421 18.863 −0.442 −2.343 
1.4 321.4101 17.928 18.317 −0.389 −2.124 
1.5 307.9057 17.547 17.891 −0.344 −1.923 
1.6 297.4813 17.248 17.552 −0.304 −1.732 
1.7 289.2701 17.008 17.278 −0.270 −1.563 
1.8 282.6879 16.813 17.055 −0.242 −1.419 
1.9 277.3304 16.653 16.869 −0.216 −1.280 
2.0 272.9108 16.520 16.714 −0.194 −1.161 
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Table 3: Fundamental frequencies of SSSC plate under free vibration for flexural rigidities, 
φ1 = 1, φ2 = 0.5,  φ3 = 0.5, and aspect ratio, p = b/a 

Aspect 
ratio, 

p = b/a 

Fundamental frequency 
squared, λ2 from the 

present work 

Fundamental frequency, λ Difference 
(λ1 − λ2) 

Percentage difference 
�(λ1−λ2)

λ2
�% Present work, 

λ1 
Pilkey’s 

solution, λ2 
0.1 499246.4 706.574 708.109 −1.535 −0.217 
0.2 33530.97 183.115 184.988 −1.873 −1.012 
0.3 7507.750 86.647 88.463 −1.816 −2.053 
0.4 2845.580 53.344 55.013 −1.669 −3.034 
0.5 1468.117 38.316 39.802 −1.486 −3.733 
0.6 926.8732 30.445 31.741 −1.296 −4.083 
0.7 670.9488 25.903 27.019 −1.116 −4.130 
0.8 533.1983 23.091 24.047 −0.956 −3.976 
0.9 451.6538 21.252 22.070 −0.818 −3.706 
1.0 399.7615 19.994 20.696 −0.702 −3.392 
1.1 364.8221 19.100 19.704 −0.604 −3.065 
1.2 340.2153 18.445 18.968 −0.523 −2.757 
1.3 322.2416 17.951 18.406 −0.455 −2.472 
1.4 308.7126 17.570 17.968 −0.398 −2.215 
1.5 298.2705 17.271 17.620 −0.349 −1.981 
1.6 290.0383 17.031 17.339 −0.308 −1.776 
1.7 283.4298 16.835 17.109 −0.274 −1.601 
1.8 278.0413 16.675 16.918 −0.243 −1.436 
1.9 273.5875 16.540 16.758 −0.218 −1.301 
2.0 269.8622 16.427 16.622 −0.195 −1.173 

 

CONCLUSION  
An approximate method for analyzing the vibration characteristics of a freely vibrating rectangular thin 
orthotropic plate using Taylor-Maclaurin series formulated shape function was presented in this work. 
The closeness of the results of this work with Pilkey’s solution, indicates that the newly derived 
equations given in Eqs. (39) and (40) can be used to compute fundamental frequencies of a free vibrating 
SSSC rectangular thin orthotropic plate. The use of Taylor-Maclaurin series in Rayleigh-Ritz method to 
formulate new equations for the SSSC rectangular thin orthotropic plate is a simple and versatile 
approach that can be applied to various rectangular plate cases.  
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