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Abstract: This paper investigates the buckling behavior of double-layered graphene sheets (GSs) with vaious 
boundary conditions. It is assumed that two graphene sheets are bonded by an internal elastic medium and 
surrounded by external elastic fundation. Governing equations are derived based on new first-order sher 
deformation theory (NFSDT), while the expressions for the buckling load are given in explicit form for a graphene 
sheets with all edges simply supported (SSSS) and all edges clamped (CCCC). The equations of equilibrium of the 
nonlocal model have been derived by using the vertical displacement method. Two characteristic types of buckling 
are considered (in-phase buckling and out-of-phase buckling). The influence of small scale coefficient, aspect ratio, 
stiffness of internal elastic medium and external elastic fundation on the nonlocal buckling load is explained. 
Keywords: Analytical modelling, Buckling, Nano-structures 
 
1. INTRODUCTION  
The double- nanoplate systems (DNPS) can be found in nanocomposites structures such as multiple GSs 
dispersed in a polymer matrix. DNPS consist of two GSs bonded by an elastic medium, e.g. polymer resin. 
The internal elastic medium between the two layers of GSs is modelled in the Winkler model. The 
surrounding elastic medium is modelled by the two-parameter Pasternak-type foundation.The first 
parameter presents normal pressure, while the other presents the influence of shear stress. Following 
the production of carbon nanotubes (CNTs) [1] and GSs [2] these two nanostructural elements, due to 
their extraordinary mechanical, chemical, electronic and thermal conductivity properties [3-5] have 
very often been used as components in microelectro-mechanical systems (MEMS) and nano electro- 
mechanical systems (NEMS). Composite materials are one of the most significant applications of 
multilayer nanoplate structures.  
Every potential application of GSs requires very good knowledge of their mechanical behaviour. Because 
of the very small dimensions of nanostructure elements, it is very difficult to perform experimental 
research. Also, molecular dynamic (MD) simulation is highly computationally expensive in the analysis 
of GSs with large numbers of atoms. Behfar and Naghdabadi [6] used classical elasticity theory to 
investigate the vibration behaviour of orthotropic multi-layered graphene sheets embedded in an elastic 
medium. Liew et al. [7] investigated the vibrations of isotropic multi-layered GSs embedded in an elastic 
matrix using a classical continuum model. Classical elasticity theory is a scale free theory and cannot 
handle such small effects. As a result, the mechanical behaviour of the nanostructures cannot be 
described by classical elasticity theory successfully. This made Eringen formulates nonlocal elasticity 
theory [8] as a modification of the classical elasticity theory. In Eringen's nonlocal elasticity theory the 
small scale effects have been taken into account assuming that the stress tensor in the observed point 
depends on the deformation tensor in all other points of the entire domain occupied by the material. In 
the classical elasticity theory, the state of stress in the observed point depends on the state of 
deformation in that point only. Peddiesson et al. [9] were the first to apply the theory of nonlocal 
elasticity to the analysis of static deformations of Euler-Bernoulli nanobeams. Sudak [10] applied 
nonlocal continuum mechanics to the buckling analysis of multiwalled CNTs. Duan and Wang [11] were 
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the first to formulate the nonlocal continuum plate model while researching the influence of small scale 
parameter on the bending of circular nanoplates. Sakhaee-Pouret al. [12] applied the nonlocal 
continuum plate model for the vibration analysis of single-layered GSs. 
Recently, by applying the nonlocal continuum plate model, a number of papers concerned with the 
analysis of the mechanical behaviour of double-nanoplates systems have been published. Murmu and 
Adhikari [13] studied the nonlocal vibration of bonded double-nanoplate systems. Murmu et al. [14] 
investigated nonlocal buckling of double-nanoplate-systems under biaxial compression. Pouresmaeeli 
et al. [15] presented the vibration of double-orthotropic nanoplates embedded in an elastic medium. 
The external medium was modelled as Winkler type foundation. Recently, Radić and Jeremić [16] 
studied the thermal buckling of double-layered grapheme sheets embedded in Pasternak elastic 
medium using nonlocal new first-order shear deformation theory. Their work drew from Kirchhoff’s 
nonlocal plate theory.  
Pradhan and Phadikar [17] reformulated the classical plate theory (CLPT) and first-order shear 
deformation theory (FSDT) of plates by using Eringen’s nonlocal differential constitutive relation. The 
derived equations were solved for the case of simply supported boundary conditions by applying 
Navier’s approach. Pradhan [18] analyzedthe buckling behaviour of grapheme by using the 
reformulated higher- order shear deformation theory (HSDT). Recently, Hashemi and Samaei [19] have 
analysed the buckling behaviour of micro/nanoscale plates based on nonlocal first-order shear 
deformation theory (FSDT). Samaei et al. [20] also used nonlocal FSDT to analyse the buckling behaviour 
of a single-layered graphene sheet embedded in an elastic medium. Thai et al. [21] investigated the 
bending, buckling and free vibration of functionally graded sandwich plates under various boundary 
conditions using a new first-order shear deformation theory (NFSDT). A verification study 
demonstrated that the NFSDT was more accurate in relation to FSDT and comparable to higher-order 
shear deformation theory (HSDT). Besides that, NFSDT is significantly simpler compared to FSDT and 
HSDT because of its lower number of unknown parameters. 
In this paper, using Eringen’s nonlocal differential constitutive relation local NFSDT has been 
reformulated and used for the analysis of nonlocal buckling load of double-layered GSs under various 
boundary conditions. Two different boundary conditions have been discussed in the analysis of the 
nonlocal buckling load of double-layered GSs. 
2. THEORETICAL FORMULATION 
Double-layered GSs are surrounded by an 
external elastic medium. For mathematical 
modelling, the connection between the two 
layers of GSs is modelled with identical 
vertical springs whose stiffness is C . The 
external medium is modelled as a Pasternak 
type foundation, which includes Winkler 
modulus parameter WK  and shear modulus 
parameter GK  of the external elastic medium. 
Both GSs layers have the length XL , width yL , 
and thickness h. We will associate the 
nanoplates with the coordinate system in which the x- and y-axes are located in the mid plane, (z=0), 
while the coordinate beginning is placed in the corner of the nanoplate, as shown in Figure 1.  
2.1. Nonlocal elasticity theory for isotropic nanoplate  
Nonlocal elastic theory assumes that the stress state at a reference point x in an elastic continuum 
depends not only on strain at that point but also on the strain states at all other points x'on the domain. 
The basic equations for a linear, homogenous, isotropic, nonlocal elastic body are given by Ref. [20]. The 
components of nonlocal stress tensor ( )ij xσ are given in the form of the following expression: 

( ) ( ' , ) ( ') ( ') , , ,σ λ ξ σ= − =∫ L
ij ij

V

x x x x dV x i j x y z                                               (1) 

where ( ')L
ij xσ  is the classical or  local stress tensor  at any point 'x  in the body, kernel function 

( ' , )x xλ ξ− represents the nonlocal modulus and it defines the influence of deformation in the point 'x
to the stress in the observed point x , 0 /e aξ =  is a material constant that depends on the internal 

 
Figure 1. Double-layered graphene sheet embedded in an 

elastic medium 
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characteristic length a (e.g. lattice parameter, granular size, distance between C-C bonds) and external 
characteristic length   ( e.g. crack length, wave length); and 0e is the constant which depends on the type 
of material and it is determined independently for each material, on the basis of experimental results or 
some other valid method. A classical or local stress tensor at any point 'x can be expressed via the 
deformation tensor by the generalized Hook’s law:   

( ') ( ')σ ε=L
ij ijkl klx C x           (2) 

where ijklC is the fourth-order elasticity tensor and ( ')kl xε  is the strain tensor. 
The linear diferential operator is an aproximate model of the kernel obtained by matching the Fourier 
transforms of the kernel in the wave number space with the dispersion curves of lattice dynamics. It can 
be shown that the linear operator operator for the two-dimensional case has the following form: 

( )2 2
01= − ∇e a¢                                                                           (3) 

where 2∇  is the Laplacian operator which is defined by 2 2 2 2 2( / / )x y∇ = ∂ ∂ + ∂ ∂ , 0e a is the nonlocal 
parameter. 
2.2. The generalized displacement field 
The displacement field for the new FSDT is given by 

( , , ) ( , ) ϕ∂
= −

∂xu x y z u x y z
x                                                                       

(4) 

( , , ) ( , ) ϕ∂
= −

∂yu x y z v x y z
y

                 (5) 

( , , ) ( , )=zu x y z w x y                                                                             (6) 
where , , ,u v w ϕ∂ ∂x  and ϕ∂ ∂y are unknown displacement functions. Nonlocal constitutive equations for 
one nanoplate have the following form: 
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where elastic constants ijC depend on Young’s modulus E and Poisson’s ratio ν  

11 22 21 ν
= =

−
EC C ,  12 21 21

ν
ν

= =
−

EC C ,  44 55 66 2(1 )ν
= = =

+
EC C C

                                   
(8)

 3. EQUATIONS OF EQUILIBRIUM 
Equations of equilibrium have been derived by using the virtual displacement method, which presents 
a special case of Hamilton's principle for static problems.  According to the principle of virtual 
displacement, the first variation of potential energy of the system must be equal to zero 

0δ δ+ =U V        (9) 
where Uδ is  virtual strain energy and Vδ  is the virtual work done by the applied  forces of the external 
elastic foundation, internal elastic medium, and in-plane forces.   
In order to solve the problem of the buckling of one nanoplate by applying NFSDT we need to solve the 
system of two partial differential equations (equations that correspond to the displacements due to 
bending 1 1,δ δϕw ): 

( )2 2 2 2 2
1 1 1 0 1 1 2 1 1: ( ) 1 ( ) ( ) 0δ ϕ  ∇ − + − ∇ − + ∇ + − + ∇ = s W G crw K Gh w e a K w K w C w w N w

       
                  (10) 

( )4 2
1 1 1 1: 0δϕ ϕ ϕ∇ + ∇ − =sD K Gh w                    (11) 

Eqs. (10) and (11) are related to graphene sheet 1. In the same way the equations of equilibrium for 
graphene sheet 2 are obtained: 

( )2 2 2 2 2
2 2 2 0 2 2 1 2 2: ( ) 1 ( ) ( ) 0δ ϕ  ∇ − + − ∇ − + ∇ + − + ∇ = s W G crw K Gh w e a K w K w C w w N w

                      
(12) 

( )4 2
2 2 2 2: 0δϕ ϕ ϕ∇ + ∇ − =sD K Gh w      (13) 

In Ref. [21], the use of shear correction factor has been avoided, so that transverse shear stiffness exists 
in  equations of equilibrium, which is calculated directly from the equations  of equilibrium via the 
transverse shear stress. In the case of nanoplates, it can be proved easily that the expression for the 
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transverse shear stiffness is reduced to the value sK Gh  which occurs in the FSDT equations and it has 
been used in Eqs. (10)-(13). 
4. ANALYTICAL BUCKLING SOLUTIONS 
Two different ways of nanoplate support will be explored in this paper. The edge of a nanoplate in our 
cases can be clamped (C) or simply supported (S). For NFSDT these two boundary conditions are 
mathematically expressed in the following ways: 
clamped edge (C) 

0
ϕ ϕ∂ ∂

= = =
∂ ∂

i i
iw

x y
,  at x=0,Lx 

0
ϕ ϕ∂ ∂

= = =
∂ ∂

i i
iw

x y
, at y=0,Ly i=1,2;                                      (14) 

and simply supported edge (S) 

0
ϕ∂

= = =
∂

i
xxi iM w

y
,   at x=0,Lx 

0
ϕ∂

= = =
∂

i
yyi iM w

x
,   at y=0,Ly i=1,2;                                      (15) 

The solution of the system of partial differential Eqs. (10-13) under boundary conditions which are 
defined in Eqs. (14-15), can be obtained if we assume the displacement functions in the following form  

1 1

1 1

2 2

2 2

( , ) ( ) ( )
( , ) ( ) ( )
( , ) ( ) ( )
( , ) ( ) ( )

ϕ ϕ

ϕ ϕ

=

=

=

=

mn

mn

mn

mn

w x y W X x Y y
x y X x Y y

w x y W X x Y y
x y X x Y y

               (16) 

where 1 1 2 2( , , , )ϕ ϕmn mn mn mnW W  are the unknown coefficients. 
The functions ( )X x and ( )Y y are given in Table 1. and suggested in Ref. [21] and [22] so that they 
satisfy different boundary conditions in Eqs. (14)-(15).  

Table 1. The admissible functions X(x) and Y(y). 
Boundary conditions The functions X(x) and Y(y) 

Notation x=0 y=0 X=Lx Y=Ly X(x) Y(y) 
SSSS S S S S sin( )xα  sin( )yβ  

CCCC C C C C 2sin ( )xα  2sin ( )yβ  
In that,α π= Xm L and β π= yn L , m and n are the half wave numbers. Substituting Eq. (16) into Eqs. (10-
13) the analytical solution can be obtained from 
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               (17) 

In this section by solving Eq.(17), the values of the critical buckling load will be determined for two 
different support conditions.  
By solving Eq. (17) the values of critical buckling load obtained for two characteristic buckling cases.  

( ) ( ) ( )
( )( )

1 2 1 3 1 2 2 1
1

1 2 2 1

µ µ
µ

+ − + − −  =
− −

s W G s
cr

s

K GhDVV K V V K V V DV K GhV
N

V V DV K GhV
                                    

(18)
      

 

( ) ( ) ( )
( )( )

1 2 1 3 1 2 2 1
2

1 2 2 1

( 2 ) µ µ

µ

+ + − + − −  =
− −

s W G s
cr

s

K GhDVV K C V V K V V DV K GhV
N

V V DV K GhV
                                    

(19) 

The equations (18) and (19) are valid in the case of SSSS and CCCC and the mark 2
0( )µ = e a has been used. 

The values for 1V , 2V , and 3V depend on the type of  nanoplates support: 

a) SSSS nanoplates: ( )2 2
1 4

α β= − +x yL L
V ,        ( )22 2

2 4
α β= +x yL L

V ,       3 4
= x yL L

V  

b) CCCC nanoplates: ( )2 2
1

3
16

α β= − +x yL L
V ,       4 2 2 4

2
3 3

2 2 2
α α β β = + + 

 
x yL L

V ,    3

9
64

= x yL L
V  
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In the case of in-phase buckling, the two nanoplates buckled synchronously ( 1 2w w= ). In the case of out-
of-phase buckling, the two nanoplates buckled asynchronously ( 1 2 1 2,w w w w≠ = − ). It is known that in the 
case of in-phase buckling, the critical buckling load does not depend on the stiffness modulus C , which 
is different from out-of-phase buckling where the critical buckling load is proportional to the double 
value of the stiffness parameter C .  
5. NUMERICAL RESULTS 
This section shows a few numerical examples of the buckling behaviour of double-layered GSs that have 
been embedded in a Pasternak elastic medium. The mechanical properties of GSs are the same as in Ref. 
[25]. Although the value of the nonlocal parameter 0e a  is not accurately known for the GSs, it can be 
seen from the available literature that its most often value for GSs and CNTsis 0 0 2e a nm= ÷ . The nonlocal 
parameter has been taken in the same interval in Ref. [13,25,26]. 
The various non-dimensional parameters used are 

4

= W x
WN

K L
K

D
,    

2

= G x
GN

K L
K

D
,     

4

= x
N

CL
C

D  
Table 2. Validation of the results for critical buckling load for single-layered graphene sheets for all edges simply 

supported obtained from molecular dynamic simulation. 
Lx = Ly(nm) MD simulation (nN/nm) Present Study  (nN/nm) 

4.99 1.0837 1.0662 
10.77 0.4331 0.4320 
18.51 0.1714 0.1740 
26.22 0.0889 0.0911 
33.85 0.0554 0.0558 
41.78 0.0372 0.0370 

In Table 2, the comparison of results is given for critical buckling loads on square monolayer simple-
supported GSs with the results obtained by the application of molecular dynamic simulation in Ref. [23]. 
Young’s modulus of the GSs is assumed as E = 1 TPa, Poisson’s ratio ν =0.16, h =0.34 nm, 0w GK K= = , 
and 0.C = From Table 2, a very high concordance of the results in the present study with the results in 
Ref. [11] can be noticed. In Ref. [23], it has been demonstrated that the optimal value of the nonlocal 
parameter for First-Order Shear Deformation Theory is 2 2

0( ) 1.81e a nm= . The value of the Winkler 
modulus parameter WNK , for the surrounding polymer matrix is varied from 0 to 500, what for 10xL nm=

corresponds to the change 0 0.185WK GPa nm GPa nm= ÷ , while the shear modulus parameter GNK  is 
varied from 0 to 20,what for 10xL nm= corresponds to the change 0 0.771GK nN nm nN nm= ÷ . 
In Ref. [27] the value for C is varied from 0.005 GPa nm to 0.1 GPa nm . In a dimensionless form it 
corresponds to the change NC from 5 to 270. For the present study, the transverse shear correction 
factor is taken as 0.8667. The same value for the transverse shear correction factor has been taken in 
Ref. [19]. In the following figures on the coordinate axis, the values 10-4 Ncr are used. 

 
Figure 2. Small scale effect on critical buckling load of double-layered graphene sheets at various nonlocal 

parameters and boundary conditions for in-phase buckling  
( )250, 10, 0WN GN NK K C= = = for (a) 1, 10x ym n L L nm= = = = , (b) 2, 10x ym n L L nm= = = = and (c) 

1, 20x ym n L L nm= = = = . 
In all three figures, the highest value of the critical buckling load is for CCCC nanoplates, while the lowest 
value is for SSSS nanoplates. In all cases, with the increase of the nonlocal parameter value, the value of 
critical buckling load is decreased nonlinearly. The highest nonlinearity is present at CCCC nanoplates, 
and the lowest at SSSS nanoplates.  
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The nonlinearity increases with the increase of the half wave number, so that, in cases where
10x yL L nm= =  and 2m n= =  are at higher values for nonlocal parameter the value of critical buckling 

load becomes very close for two observed cases. It is known that with the increase of the number of half-
waves the intensity of nonlocal effect increases. It is obvious that the influence of nonlocal effect on the 
decrease of the value of critical buckling load depends very intensively on the way in which the 
nanoplates are supported. At higher values of the nonlocal parameter, the difference in the value of 
critical buckling load is significant for all two boundary conditions.  

 
Figure 3. Small scale effect on critical buckling load of double-layered graphene sheets at various nonlocal 

parameters and boundary conditions for out-of-phase buckling 
( 250, 10, 200WN GN NK K C= = = )  for (a) 1, 15x ym n L L nm= = = = , (b) 2, 10x ym n L L nm= = = = and (c) 

2, 20x ym n L L nm= = = =  
In Figure 3b, it can be noticed that in the case of out-of- phase buckling at 10x yL L nm= =  and 2m n= =  at 
high values of nonlocal parameter ( 22nmµ ≈ ) the value of critical buckling load is very close for the case 
of CCCC and SSSS nanoplates. In the case of Figure 3a, where 15x yL L nm= = and 1m n= = the buckling 
behaviour is the same as in the case of the in-phase buckling in Figure 2a. In the case of Figure 3c when

20x yL L nm= = and  2m n= = , it can be seen that the difference in the values of critical buckling load  at 
higher values of nonlocal parameters is important for all two ways of support.  
6. CONCLUSIONS 
In this paper is applied a new nonlocal first-order shear deformation theory to illustrate the nonlocal 
buckling behaviour of double-layered GSs embedded in an elastic medium. The equations of equilibrium 
are derived by using the virtual displacement method. The critical buckling load was obtained 
analytically for two characteristic cases of buckling. Numerical results discuss the effects of the nonlocal 
parameter, plate aspect ratio, elastic foundation stiffnesses and boundary conditions on the critical 
buckling load for two characteristic cases of buckling of the double-layered GSs. The following 
conclusions may be drawn from the present paper: 
1. For both characteristic cases of buckling, the value of the critical buckling load decreases with the 

increase of the value of the nonlocal parameter. The way in which the plates are supported 
significantly influences the intensity of the decrease of the critical buckling load. 

2. The nonlocal effect is the most prominent at CCCC nanoplates, and the lowest at SSSS nanoplates for 
both characteristic cases.  

3. In both characteristic cases of buckling, the value of the critical buckling load decreases with the 
increase of the nonlocal parameter value. That decrease of the value of the critical buckling load is 
the most intensive at CCCC nanoplates (Fig 2.b and Fig. 3.b). 

Note 
This paper is based on the paper presented at The 3rd International Scientific Conference on Mechanical 
Engineering Technologies and Applications (COMETa 2016), organized by the Faculty of Mechanical 
Engineering, University of East Sarajevo, in Jahorina, Republic of Srpska, BOSNIA & HERZEGOVINA, 
December 7–9, 2016 
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