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Abstract: The principal aim of this paper is to investigate the thermoelastic problems in a thick annular plate 
subjected to sectional heat supply on the upper surfaces whereas the fixed circular edges are at zero temperature. 
The governing heat conduction equation has been solved by using integral transform technique. The results are 
obtained in series form in terms of Bessel’s functions. The results for displacement and stresses have been 
computed numerically and illustrated graphically. 
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1.INTRODUCTION   
As a result of the increased usage of industrial and construction materials the interest in the thermal 
stress problems has grown considerably, typified by the annular fins of heat exchangers and brake disc 
rotors, because of its elementary geometry. Therefore, a number of theoretical studies concerning them 
have been reported so far. For example,  
Nowacki [6] has determined steady-state thermal stresses in circular plate subjected to an axisymmetric 
temperature distribution on the upper face with zero temperature on the lower face and the circular 
edge. The direct thermoelastic problem in an annular fin is studied by Wu [10] investigates the transient 
thermal stresses in an annular fin with its base subjected to a heat flux of a decayed exponential function 
of time. Wankhede [11] has determined the quasi-static thermal stresses in thin circular plate subjected 
to arbitrary initial temperature on the upper face with lower face at zero temperature and the fixed 
circular edge thermally insulated. Gogulwar and Deshmukh [3] solved the inverse problem of thermal 
stresses in a thin annular disc, which was further generalized [2] in direct problem. Chiu and Chen [1] 
investigated stress-field in an annular fin of temperature-dependent conductivity under a periodic heat 
transfer boundary condition is analyzed by the Adomian's decomposition method. Recently Ootao et al. 
[8] performed analysis of a three-dimensional transient thermal stress problem is developed for a 
nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction from the 
inner and /or outer surfaces. In this paper our attempt has been made to discuss quasi static transient 
thermal stresses in a thick annular plate bra ≤≤  , hzh ≤≤−  and the result illustrated numerically and 
graphically by using integral transform technique. No one previously studied such type of problem. This 
is a new contribution to the field.  
2.FORMULATION OF THE PROBLEM  
Consider a thick annular plate of thickness 2h, occupying a space D defined by ,bra ≤≤ hzh ≤≤− . Let 
the plate be subjected to a transient asymmetric temperature field on the axial direction & axisymmetric 
temperature field on the radial direction of the cylindrical coordinate system. Initially the plate is kept 
at zero temperature the arbitrary heat flux λ/)r(Qf  is prescribed over the upper surface (z = h) and the 
lower surface (z = h− ) the fixed circular edge (r = a  and r = b) are at zero temperature. Assume the 



 

170 | F a s c i c u l e  2   

upper and lower surface of thick annular plate are traction–free surface under this realistic prescribed 
condition the quasi-static transient thermal stresses are required to be determined. 
2.1.Temperature distribution 
The transient heat conduction equation is given as follows  
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in which thermal diffusivity of the material of the plate is denoted as ,C/ρλ=κ λ  being the thermal 
conductivity of the material, ρ  is the density and C  is the calorific capacity, assumed to be constant, 
subjected to the initial and boundary conditions as 

0=T     at  0=t                                                                                   (2) 
0=T    at  ,ar = hzh ≤≤−  , 0>t                                                              (3) 
0=T   at  ,br = hzh ≤≤−  , 0>t                                                               (4) 
0=T   at  ,hz −= bra ≤≤  , 0>t                                                               (5) 
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2.2.Thermal displacements and thermal stress      
The Navier’s equations in the absence of body forces for axisymmetric two-dimensional thermoelastic 
problem can be expressed as [5] 
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where ru  and zu  are the displacement components in the radial and axial directions, respectively and 
the dilatation e as 
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The displacement function in the cylindrical coordinate system are represented by the Goodier’s 
thermoelastic displacement potential φ and Love’s function L as [4] 
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in which Goodier’s thermoelastic potential must satisfy the equation 
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and the Love’s function L must satisfy the equation 
0)L( 22 =∇∇                                                                               (10) 
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The component of the stresses are represented by the use of the potential φ  and Love’s function L as 
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in which G  and υ  are the shear modulus and Poisson’s ratio respectively. 
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The boundary condition on the traction free surface stress functions are 
0rzrr =σ=σ at hz ±=                                                                         (12) 

Equations (1) to (16) constitute the mathematical formulation of the problem. 
3.SOLUTION OF THE PROBLEM 
3.1.Solution for Temperature distribution 
Applying Laplace transformation [9] of the equation (1) to (6) with respect to t and using the equation 
(2) one obtain 
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with boundary condition 
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0=T  at  hz −=                            (15) 
0=T  at   r = aandr = b                               (16) 

where  p is Laplace transform parameter and T  Laplace transform of T 
Introducing theHankel transform over the variable r and its inverse transformation defined [7] as 
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and .., 21 αα ……are roots of the transcendental equation 0),(0 =amR α with )(xnJ  is the Bessel function 
of the first kind of order n and )(xnY  is the Bessel function of the second kind of order n. 
Applying the finite Hankel integral transform, and its inversion theorems for both transforms, yield 
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3.2.Solution for thermal stresses 
(a) Goodier thermo-elastic displacement potential φ. 
Referring to the fundamental equation (1) and its solution (18) for the heat conduction problem, the 
solution for the displacement function are represented by the Goodier’s thermo-elastic displacement 
potential φ  governed by equation (9) are represented by  
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(b) Love’s function L 
Similarly, the solution for Love’s function L are assumed so as to satisfy the governed condition of 
equation (12) as 
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in which mnH  and mnR  are arbitrary unknown functions 
(c) Displacement and Thermal stresses  
In this manner two displacement functions in the cylindrical coordinate system φ and L are fully 
formulated. Now, in order to obtain the displacement components, we substitute the values of thermo-
elastic displacement potential φ  and Love’s function L in equations (9) and (10), one obtains 
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(d) Determination of unknown arbitrary function mnH and mnR  
Applying boundary condition (17) to the equation (25) and (28) one obtains  
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4.SPECIAL CASE AND NUMERICAL CALCULATIONS 
Setting   

)br)(ar()r(f 2222 −−=             (45) 
Applying finite Hankel transform as defined in equation (21) to the equation (45), 
 One obtain 
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5.NUMERICAL CALCULATIONS 
The numerical calculation have been carried out for (SN 50C) plate with the parameters a = 1m, b = 2m, 
h = 0.3m, thermal diffusivity )sm(10*9.15k 126 −−=  and Poisson ratio v = 0.281 with  

7040.15,5614.12,4182.9,2734.6,120.3 54321 =α=α=α=α=α  being the Positive roots of 
transcendental equation 0),(0 =amR α  For convenience setting ,510/πλQKA = 510/2 πλGQKB =  in the 
expression (3.39) to (3.44) The numerical expression for temperature, displacement and stress 
components are obtained by equations (34) and (37) to (42).In order to examine the influence of heat 
flux on the upper and lower surface of thick plate, one performed the numerical calculations r = 1, 1.2, 
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1.4, 1.6, 1.8, 2 m and z =- 0.3, -0.15, 0, 0.15, 0.3 m. and t = 5, Numerical variations in radial and axial 
directions are shown in the figures. 
6.CONCLUDING REMARKS 
In this study, we have treated thermoelastic problem of a thick annular plate which is considered 
traction free. We successfully established and obtained the expressions for temperature distribution, 
displacement and stress function due asymmetric arbitrary heat flux. Then, in order to examine the 
validity of boundary value problem, we analyze, as a particular case with mathematical model for 

)br)(ar()r(f 2222 −−= and numerical calculations were carried out. The thermoelastic behavior is 
examined such as temperature, displacement and stresses with the help of arbitrary heat flux at upper 
surface applied.  

 
Figure 1: Axial displacement profile along axial 

direction 

 
Figure 2: Radial displacement profile along axial 

direction 

 
Figure 3: Radial stress distribution along radial 

direction 

 
Figure 4: Radial stress distribution along axial 

direction 
Figure 1 shows the axial displacement uzoccurs at the center i.e. r = 1.5 in radial direction where as in 
radial direction decreases from lower surface to upper surface.  
As shown in Figure 2 the variation of thermal stress in the radial displacement ur decreases from inner 
circular surface to outer circular surface in radial direction where as in axial direction it take place at 
upper and lower surfaces of the plate. 
Figure 3 and Figure 4 shows the radial stress 
function σrr develops tensile stress at upper and 
lower surface of the plate, where as it develop 
compressive stress in the middle of plate.  
Figure 5 shows the variation of the stress 
function σθθdevelops tensile stress at the upper 
and lower surface of the plate where as it 
develops compressive stress in the middle of 
plate. We may conclude that the system of 
equations proposed in this study can be adapted 
to design of useful structures or machines in 
engineering applications in the determination of 
thermoelastic behaviour at every instant and at 
all points of thick annular disc of finite height. 
 

 
Figure 5: Tangential stress distribution along radial 

direction 
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