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Abstract: To reduce the time for unavoidable freezing and melting of agitated bath material onto a low melting 
temperature cylindrical solid additive with the growth of the frozen layer of negligible thermal resistance during melt 
preparation of required composition for production of steel and cast iron and consequently decreasing the 
production time, cost, requirement of energy and impact on environment makes the product globally competitive. 
With this objective, a non-dimensional lump-integral model is evolved for this event. It exhibits its control by non-
dimensional independent parameters: the property-ratio, γ, the melting temperature-ratio, θab, the heat capacity-
ratio, Cr of the additive-bath system, the bath material phase-change parameter, the Stefan number Stb, and that of 
the additive, Sta, and the bath condition the conduction factor, Cof. Moreover, the model gives close-form solutions 
for the freezing and melting and associated heating and melting of additive in terms of these parameters. When the 
frozen layer, R*

bm, is represented by the frozen layer per unit Stefan number, Stb, of the bath material and time Ʈ* as 
per unit property-ratio, γ, the solution for R*

bm remains only in terms of Sta, θab, and Cof.  The plots of these solutions 
indicate that decreasing Cof for certain θab and Sta, or reduction in θab for prescribed Cof and Sta or Increasing Sta for 
given Cof and θab diminishes the total time  of freezing and melting. The associated heating and melting of the 
additive are also found. When the bath is at the freezing temperature of the bath material, only freezing occurs. Its 
closed form solution is derived. This model is validated with that of the literature by transforming it to only melting 
of the cylindrical additive initially at its melting temperature subjected to constant temperature heat injection. A 
close agreement is found. 
Keywords: Alloyants addition, Alloyants-melt bath system, Mathematical modeling, Freezing and Melting 
 
 
1. INTRODUCTION 
To compete in aggressive global market, steel and cast iron of different compositions are required to be 
produced with high productivity, reduced cost, and with no adjustment in their quality. Prior to their casting, 
their melts are prepared by immersing and assimilating alloyants, called additives, in the melt bath, and then 
are treated by several metallurgical processes. Here, an unavoidable event of freezing and melting of the bath 
material around the additive occurs soon after their immersing in the bath.  It sets in high temperature gradient 
towards the additive side in the initial period resulting in the requirement of the conductive heat by the additive 
far greater than the convective heat supplied from the bath.  Since the conductive heat needed by the additive   
is met by the sum of the convective heat of the bath, and the latent heat of fusion generated owing to the 
freezing of the bath material onto the additive, the excess conductive heat is balanced by the latent heat of 
fusion of the bath material evolved due to its freezing onto the additive.   With passing of the time, the 
temperature gradient onto the additive side and, consequently, the conductive heat requirement by the 
additive decrease until the conductive heat becomes the same as that of the bath convective heat.  After this 
time, the conductive heat is lower than the available bath convective heat due to which the extra convective 
heat melts the frozen layer. During the entire period of the freezing and melting of the bath material, the 
additive of low melting temperature gets heated and melts with increase in the melt depth, and the heat 
penetration depth. Such an event is performed in a certain time, and dependent upon the thermo-physical 
properties of the additive and the bath material, their temperatures at the initiation of this event, the bath 
condition represented by the bath convection, and the shape and size of the additive. In order to reduce the 
time of this event, for a given additive-bath system, only the convective heat of the bath that decides the extent 
of the frozen layer formed needs to be controlled. To increase this heat that permits the formation of a smaller 
thickness of the frozen layer, which melts in a lesser time, the heat transfer co-efficient of the bath is required 
to be increased. It is obtained by making the bath highly agitated. The thermal resistance of such a thickness 
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including that of the agitated bath is much less than that of the additive. Moreover, less time taken in the 
freezing and melting results in diminishing the production time and increasing the productivity. 
Investigation of this event with the additive having the melting temperature lower than that of the freezing 
temperature of the bath material seldom appears in the literature. However, for the thermal resistance of the 
additive comparable with that of the frozen layer of the bath onto the additive, the freezing and melting was 
studied in case of plate [1], cylindrical [2-6],  and spherical [7-12] shaped additives. Their melting temperature 
was higher than the freezing temperature of the bath material and their thermo-physical properties were taken 
to be uniform but different.  It was found that increasing the bath convective heat by raising the value of the 
heat transfer co-efficient or decreasing the freezing temperature of the bath material reduces the development 
of the frozen layer thickness and the time of the freezing and melting for the plate additive [1] and the cylindrical 
additive [5] made of titanium. For the spherical additive [2] , this prediction was implicit, When the thermal 
resistance of the frozen layer is negligible with respect to that of the high melting temperature plate [13], 
cylindrical [14], and spherical [15] additives, the close-form solutions for the freezing and melting were reported. 
The closed-form solution was also obtained for the plate with temperature-dependent heat capacity [16]. 
Recently, the literature exhibited the closed-form expressions for the instant equilibrium temperature at the 
interface between the high melting temperature [17] and the low melting temperature [18] cylindrical additives 
once the freezing of the bath material onto these got initiated after plunging them in the bath. It was also found 
for the high melting temperature plate additive [19]. 
The current problem relates to the axi-symmetric freezing and melting of the bath material onto a cylindrical 
additive, when its melting temperature is lower than the freezing temperature of the bath material. The bath is 
highly agitated, and the thermal resistance of the frozen layer developed is assumed to be negligible in 
comparison with that of the additive. Its non-dimensional mathematical model in lump- integral format is 
evolved. It makes the event dependence upon the non-dimensional independent parameters: the property-
ratio, γ, the melting temperature-ratio, θab,  and the heat capacity-ratio, Cr, of the additive-bath system, the 
Stefan number of the additive, Sta and that of the bath material, Stb and the condition of the bath denoted by 
the conduction factor, Cof and leads to close- form solutions for the freezing and melting of the bath material 
onto the additive and heating and melting of the additive, but these solutions are only in terms of θab, Sta and 
the conduction factor, Cof of the bath once the frozen layer, R*

bm is represented by the frozen layer per unit 
Stefan number, Stb of the bath material and the time, τ*, the time, τ per unit property-ratio. The solutions for the 
freezing with no melting, along with the heating and the melting of the additive are also obtained. To validate 
the present problem with that of the literature, it is transformed to the melting of the cylindrical additive initially 
at its melting temperature by a constant temperature heat injection. A close agreement is found. 
2. FORMULATION OF THE PROBLEM 
To model mathematically the freezing and 
melting of an agitated bath material around 
a low melting temperature solid cylindrical 
shaped additive, the bath is considered to 
be at a uniform temperature, Tb greater 
than its freezing temperature, Tbf. In this 
bath, a cylindrical additive at an initial 
temperature, Tai lower than its melting 
temperature, Taf is immersed. This 
temperature, Taf is also less than the freezing 
temperature, Tbf of the bath material. These 
temperature set up a temperature field 
Tai<Tam<Tbm<Tb in the additive-melt 
bath system, Fig.1. Moreover, the bath 
material immediately begins to freeze 
around the surface of the immersed 
additive, the interface formed between the 
freezing layer and the additive acquires an 
equilibrium temperature, Te, that resides 
between Tai and Tbf (Tbf>Te>Taf>Tai) and 
melting along with heating of the additive initiates. As the time progresses, the interface temperature, Te, and 
the thickness of the frozen layer of the bath material onto the additive increase. The heat penetration depth, 

 
Figure 1: Diagram related to freezing and melting of the agitated bath 
material onto a low melting temperature cylindrical additive with its 

melting and heating 
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and the melt depth in the additive also increase. These occurrences continue until the heat conducted to the 
additive is larger than the convective heat supplied from the bath. The excess conductive heat is balanced by 
the latent heat of fusion evolved due to freezing of the bath material onto the additive. Once these two heats 
become equal, no further freezing takes place. After this time, the conductive heat to the additive is less than 
the convective heat causing the frozen layer to melt and allowing the interface temperature, Te, and both the 
heat penetration and the melt thicknesses increase. Finally, the frozen layer melts completely, and the melt 
portion of the additive gets assimilated in the bath leaving the rest portion of the additive at a raised 
temperature. 
This event is assumed to be regulated by unsteady conjugated radial heat conduction, and the temperature 
field sets in the frozen layer and the additive  axi-symmetry.  The dimensionless heat conduction equation in 
the integral form for the melt region of the additive with the initial and boundary conditions can be written as  
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                  amafabaf RR, =θ=θ                           0>τ                          (4) 
Physically, the first term on the right hand side of Eq.(1) denotes the rate of heat conducted to the melt region 
of the additive from the freezing layer through contact interface at Raf=1, whereas the second term of the right 
hand side is indicative of the rate of heat conducted out of the melt layer to the heated additive at Raf = Ram. The 
difference of these two causes the net rate of increase in the internal thermal energy of the melt layer 
represented by left hand side of Eq.(1).  Its first term corresponds to the rate of increase in thermal energy, and 
the combination of the second and third terms relates to rate of internal thermal energy available from increase 
in the melt depth of the additive. In the heated portion of the additive, the heat conduction equation  assumes 
the following integral format 
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Like Eq.(1), Eq.(5)  can also be physically explained. Initial and boundary conditions associated with Eq.(5)  are 
  1,0,0 =<<= ahamahah RRRθ           τ=0   (6) 

   θah= θab, Rah=Ram,           τ >0   (7) 
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The coupling conditions at the interface between the melt layer and the heated region of the additive are: 
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Surrounding the cylindrical additive, the bath is highly agitated. It provides large value of heat transfer 
coefficient between the additive and the bath resulting in high bath convective heat. Since the heat conducted 
to the additive needs to be  balanced by the sum of the latent heat of fusion evolved due to freezing of the 
bath material and the convective heat supplied by the bath, only a small amount of latent heat of fusion is 
required due to availability of the large convective heat. It leads to formation of a very small thickness of the 
frozen layer [13,14] around the additive having its thermal resistance negligible with respect to the thermal 
convective resistance of the bath permitting establishment of a uniform temperature [20,21,22] in the frozen 
layer. Because the moving front of this layer is always at the freezing temperature, Tbm of the bath material, the 
temperature of the entire frozen layer is also at Tbm, due to the above fact. The temperature at the interface Te 
between the additive and the frozen layer owing to this becomes at Tbm. Consequently, the frozen layer acts as 
a lump [20,21,22] that does not liberate or absorb the sensible heat. Application of the conservation of energy 
to such a lump leads to a balance between the heat conducted to the additive and the bath convective heat, 
Bim(Өb-1), plus the latent heat of fusion released by the freezing. It takes the following mathematical form. In 
terms of conduction factor, Cof, it can be written as 
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where, γCof = Bim(Өb-1).  Its initial condition is 
                Rbm = Cr = 1,   0=τ           (11) 

The conjugating conditions at the interface between the additive and the frozen layer can be cast as: 
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R
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-Qbn;  θaf = θbf = θe = 1,   Raf =1, Rbf =Cr,  0>τ                                  (12) 

It may be noted that the non-dimensional temperature in either additive or frozen layer denotes the 
temperature above the initial temperature of the additive with reference to the temperature difference, (Tbm-
Tai) between the freezing temperature of the bath material and the additive initial temperature. 
The mathematical model of the present problem comprising Eqs. (1) to (12) is based on the assumptions of the 
thermo-physical properties of the freezing bath material and the additive uniform but different, whereas, the 
melt layer and the heated part of the additive have uniform and the same thermo-physical properties. 
Moreover, the change in the volume of the additive upon melting and heating is zero and  the surface of the 
additive is in perfect contact with the surface of the frozen layer in spite of  the fact that the interfacial resistance 
during imperfect contact between the frozen layer and the additive occurring in manufacturing gives negligible 
effect with respect to the thermal resistance of the additive to heat transfer due to its very small values ranging 
from 1.9x10-4 m2sK/J to 2.1x10-4 m2sK/J [27]. In the past this assumption was also employed in the model of such 
problems by previous investigators [1-19]. They stated that their solutions were accurate and realistic. 
Additionally, the low melting temperature additive remains within the frozen layer of the high melting 
temperature bath material until the frozen layer completely melts. This frozen layer is symmetric about the 
central axis of the additive [33] 
3. SOLUTIONS 
The model just developed indicates that it is nonlinear owing to the presence of the moving phase-change 
boundary as a result of freezing of the bath material, Eq.(10), and melting of the additive, Eq.(9), and coupled 
because of conjugating conditions at the interface between the heated region and the melt layer of the 
additive, Eq.(9) and between the melt layer of the additive and the frozen layer of the bath material, Eq.(12). The 
coupling and nonlinearity present in the model prohibit exact solutions of the problem employing the 
analytical methods. In such a situation a semi-analytical method, known as the integral method that yielded 
closed-form expressions for several heating and phase-change problems [23-25] in the past is employed. The 
governing equation for the melting, Eq. (1) and that for the heating, Eq.(5) of the additive are already written in 
the  integral forms.    
The integral Eq.(1) related to melting of the additive is reduced to  
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when the boundary conditions, Eqs.(3) and (4) are employed, whereas Eq.(5) associated with heating of the 
additive is simplified as  
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once Eqs.(7) and (8) are applied. Combining Eqs.(13) and (14) leads to a single integral equation, called global 
integral equation. It assumes the form 
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To find the solution of the globalized integral equation, Eq.(15), the temperature distributions both in the 
heated region and the melt region of the additive need to be prescribed . A linear temperature distribution in 
the melt.  

( ) ( ) ( )( )amfabeeaf R1Ra1 −−θ−θ−θ=θ     (16) 
and a cubic temperature profile in the heated region of the additive, 

  ( ) ( )( )3aiamaiahabah RRRR −−θ=θ            (17) 
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are assumed. Note that Eq.(16) satisfies the  boundary conditions, Eqs.(3) and (4), whereas Eq.(17) fulfills the 
boundary conditions, Eqs.(7) and (8). In the previous studies, the choice of cubic temperature distribution in 
Eq.(17) in the heating problems [25,31] provided results close to exact solutions [32] whereas a linear 
temperature profile, Eq.(16) in the melting [24,28-30] and freezing problems [1,17,19] yielded accurate results. 
Substituting Eqs.(16) and (17) and coupling condition (Eq.9),  Eq.(15) takes the form 
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The conjugating condition, Eq.(12) at the interface between the melt of  the additive and the frozen layer 
becomes  
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once  Eq.(16) is applied whereas its substitution in Eq.(10) gives  
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As stated earlier, the temperature θe at the interface between the frozen layer and the melt of the additive is 
one, (θe =1). Its substitution in Eqs.(18) and (20) makes them,  respectively,  
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Combination of Eq.(21) and Eq.(22) leads to closed- form solution for the frozen layer R*
bm at any time τ 
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Note that ( ) tbrbmbm SCRR −=* , frozen layer thickness per unit Stefan number of the bath material.  
It satisfies the initial conditions τ=0, Ram = 1, Eq.(2) Rai = 1, Eq.(6) and Rbm = Cr, Eq. (11).  
To derive the solutions for Ram and Rai, Eqs. (16), (17) and θe=1 are substituted in Eq.(9) giving 
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Since it is in the form of first order differential in time, its use may not provide close-form solutions for Ram and 
Rai. To overcome this difficulty, the total differential of the temperature, θab at the interface between the melt 
and the heated region of the additive becomes.  
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due to 0abaf =θ∆=θ∆  at the interface Raf = Ram. Combination of Eq.(25) and differential form of Eq.(1)  
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leads to  

amam R1ddR −=τ                (27) 
whereas its application transforms Eq.(24) to 
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Note that the application of Eq.(28) makes expression for R*
bm, Eq.(23) only in terms of the melt layer, Ram of the 

additive.  Employing Eq.(28), Eq.(23) can be written as 
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and  Eq.(18) concerning heating and melting of the additive after substitution of θe = 1 takes the form  
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Here, A= 2
abtaS3 θ , C= 3

ab
2

taS9 θ and ( ) taab S11D θ−+=    
Since Eq.(30) is only in terms of the melt layer, Ram of the additive, it readily results in a close-form solution, which, 

when employed in Eq.(28) leads to the solution of the heated region of the additive. In terms of 
τd

dR am ,  Eq.(30) 

can be expressed as  
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Its leads to closed form solution that satisfies the initial condition 0* =τ , Ram =1. 
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where, 
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4. MAXIMUM FROZEN LAYER DEVELOPMENT  

For the growth of the frozen layer of the bath material onto the additive to be maximum, 0
d

dR *
bm =
τ

 and 
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. Using Eq.(23), 
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Application of Eq.(21) converts Eq.(33) to  
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which leads to 
( ) ofmabofam C1CR1 =θ−=−       (35) 

for 0ddR am =τ , where ofmC  is modified conduction factor.  Note that Eq.(35) gives the requisite condition 

for the frozen layer to be maximum, since  it satisfies 0dRd 2
am

2 <τ . The corresponding Rai is obtained once 

Eq.(35) is applied to Eq.(28), having abtaS3E θ= , ( ) 11SD abta +θ−=  
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The maximum frozen layer formed, MRbm
* can be obtained from Eq.(29) when Eq.(35) is employed 
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Note that τmax
* is found from Eq.(32),when Eq.(35) is substituted in it. 

5. TOTAL TIME OF FREEZING AND MELTING OF THE BATH MATERIAL, Τ*
T 

In this situation 0* =bmR .  Its substitution in Eq.(29) gives  
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Where, Ramt is the radius of the melting boundary corresponding to Rbm
* = 0 and γτ=τ t

*
t ,. For this condition, 

radius of the heating boundary Rai now called Rait can be obtained by Eq.(28)  
( ) ( )[ ]

1DR
E1EDRRR

amt

amtamt
ait −

+−+
=        (39) 

If the heat penetration approaches the central axis of the cylindrical additive, Rait=0. Its substitution in Eq.(39) 
leads to  
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when Eq.(28) is employed. It may be noted that Eq.(40) provides Ramt in terms of the melting temperature, θab 
and the phase-change parameter Sta of the additive in situation of complete melting of the frozen layer of the 
bath material formed onto the additive with simultaneous reaching of the heat penetration at the central axis 
of the cylindrical additive.  In this case, Eq.(38) readily gives the total time t

*τ  of the freezing and melting of the 
bath material Rbm, once  Eq.(40) is employed. 
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It signifies that the total time of freezing and melting of the bath material is functions of Cof, θab, and Sta. 
6. BATH KEPT AT FREEZING TEMPERATURE OF BATH MATERIAL OR FREEZING WITHOUT MELTING 
In case of the bath kept at the freezing temperature, Tbm of the bath material, the convective heat of the bath 
becomes zero. Here, only the latent heat of fusion librated due to the freezing of the bath material onto the 
additive meets the heat requirement that is conducted to the additive. It results in only freezing onto the 
additive, and makes the conduction factor, Cof infinity )( ∞→ofC . Substituting it, Eq.(29) reduces to 
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The corresponding heat penetration thickness is still obtained from Eq.(28), whereas time for development of 
Rbm

* is derived from Eq.(31). 
When  the heat penetration boundary, Rai reaches the central axis of the additive ( )0→aiR .  Eq.(28) leads to 
Eq.(40), which, when applied to  Eq.(42) gives 
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It states that the growth of the frozen layer thickness, Eq.(42) under the freezing without melting is always  
greater than that of the freezing and melting, Eq.(29) that occurs when the convective heat is supplied from 
the bath. 
7. VALIDITY 
To validate the current problem with those of the literature, it is transformed to melting of the cylindrical 
additive subjected to constant temperature heat injection at the freezing temperature of the bath material. The 
additive is initially at its material melting temperature. It leads to  amai RR = , 1e =θ , ,0ab =θ  and  1=γ .Their 
substitution in Eq.(21) leads to 
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whereas the temperature distribution in the melt region, Eq.(16) changes to  
( )amafaf R1R11 −−−=θ      (45) 

Note that Eq.(44) can also be directly obtained once Eq.(45) is employed in Eq.(15) with .1=γ  
It yields a close-form solution that appear in Eq.(44) that is transform to  
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It satisfies the initial condition τ = 0, Ram=1. In case of the complete melting of the cylinder, Ram=0. Its substitution 
in Eq.(46) reduces to  
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In the past , Zhang and Faghri, [26] found a close-form solution for the same problem but for solidification 
instead of melting and obtained 

( )( ) ( ) ( )amam
2

am
2

ta RlnR
2
1R1

4
11S21 −−=−−τ      (48) 

when they employed a temperature distribution, different than that of Eq.(46). For complete melting of the 
cylinder Ram=1, Eq.(48) gives 

  ( )1S214
1

ta
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The current solution, Eq.(48) is exactly the same as that of Eq.(49) for 23Sta = validating the present problem. 
For Sta > 3/2, it underestimates and for Sta < 3/2 overestimates the total time of the literature, Eq.(49). 
8. RESULTS AND DISCUSSIONS 
This investigation devises a non-dimensional lump-integral model for axi-symmetric freezing and melting of 
agitated bath material onto a low melting temperature cylindrical solid additive.  The model exhibits the 
dependence of this event upon non-dimensional independent parameters: the property-ratio, γ,  the heat-
capacity-ratio, Cr , and the  melting temperature-ratio, θab, of the additive-bath system, the phase-change 
parameters , the Stefan number of the bath material, Stb, and that of the additive, Sta and the bath condition 
represented by the conduction factor, Cof. It yields closed-form solutions for the freezing and melting of the 
bath material onto the additive and the associated heating and melting of the additive in terms of these 
parameters but when the frozen layer, R*

bm, taken as per unit Stefan number, Stb of the bath material, the time 
Ʈ* per unit property-ratio, γ they become only in terms of Cof, Sta and θab. Their values for different additive-bath 
systems employed in industrial applications are presented in Table.1 and their physical significance is stated.  
Table 1. Based on thermo physical properties of the Steel bath [12]; Tb = 1873 K (1600oC), Tbm = 1804 K (1531oC), Cb=0.69 

KJ/KgK, Lbm = 277000 J/Kg, Kbm= 29.3W/mK, ρbm =7820Kg/m3, Stb = 3.751 

 Thermo-physical properties of low melting temperature cylindrical 
solid additive [34] [Tai=298K(25oC), ro=0.025m] 

Non-dimensional parameters 

Additive 
Tam 

[K(oC)] 

Cpa 

KJ/KgK 
ρa 

Kg/m3 
La 

KJ/Kg 
Ka * 

W/mK 
h 

w/m2K Sta θ ab Cof 

Tin 504.9(231.9) 0.226 7300 60.71 60.47 20x104 5.60 0.137 0.288 
Bismuth 544.4(271.4) 0.13 9780 51.9 8.0 20x104 3.51 0.16 0.034 

Selenium 494(221) 0.352 4816 68.62 0.52 0.25x104 7.72 0.13 0.181 
Sulphur 388.2(115.2) 0.71 2000 115.6 0.205 1.2x104 9.25 0.059 0.071 

Note: Data for Ka are taken from Ref [20] and [35]. 
The property-ratio, γ is the ratio of the effusivity of the bath, CbKb , and that  of the additive, CaKa , and signifies 
the thermal force. When its value is low, it generates large thermal force in the bath owing to which the smaller 
thickness of the bath material freezes onto the additive. The melting temperature-ratio, θab<1 of the additive 
and the bath material is indicative of the additive melting temperature lower than that of the material of the 
bath. In this situation, both melting and heating of the additive take place. The heat-capacity ratio, Cr, is taken 
as the heat capacity of the bath material divided by the heat capacity of the additive. Cr < 1 signifies large heat 
storage in the additive with reference to that stored in the frozen layer.  The Stefan number is defined as the 
ratio of the sensible heat and the latent heat of fusion. Its high value denotes the phase-change material of 
small latent heat of fusion permitting the formation of large thickness of the frozen layer of bath material onto 
the additive for the same convective heat provided by the bath or allowing the melting of the larger thickness 
of the low melting temperature additive. The conduction factor, Cof, denotes the ratio of the heat conducted to 
the additive as a result of difference of the freezing temperature of the bath material and the initial temperature 
of the additive and the convective heat available from the bath and ranges from zero to infinity ( )∞≤≤ ofC0 . 

0Cof → signifies that no heat conduction to the additive takes place due to which freezing does not occur. It 
results in the absence of the freezing and melting event. This situation is attained once the additive before 
immersion in the bath is heated to the freezing temperature of the bath material. 0Cof →  is also achieved for 

the bath that gives extremely high heat transfer co-efficient, ∞→h  by making the bath  highly agitated, 
∞→ofC  is indicative  of absence of   the bath  convective heat. It is due to the maintenance of the bath at the 

bath material freezing temperature. In this condition, the conductive heat to the additive is met by only latent 
heat of fusion generated as a result of the freezing of the bath material onto the additive. It continues to grow 
till the conductive heat gets balanced by the latent heat of fusion. From these, it is inferred that the unavoidable 
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freezing and melting is completed in much less time if the conduction factor Cof is made  near zero value for a 
prescribed additive-bath system. It is achieved by only increasing the bath agitation. 

Displayed in Figure (2) are the behavior of the frozen layer thickness, *
bmR , melt layer thickness, *

amR , and heat 

penetration depth, *
aiR with time for various Cof, θab and Sta  are assumed to be parameters whereas Figure (4) 

exhibits these behavior for different Sta with Cof and θab taken as parameters. Figure (6) shows these  behavior 
for different  θab, when Cof and Sta are considered as parameters. It is observed that in all these figures the freezing 
and melting assumes a parabolic shape. Its apex height denotes the growth of the maximum thickness of the 
frozen layer. Its left represents the domain of the freezing and time taken to buildup the frozen layer thickness 
to its maximum extent, whereas its right is the melting region and is indicative of the time for the melting of 
the frozen layer. The freezing is faster than the melting. Combination of these times is the total time of the 
freezing and melting, which can directly be obtained from the start of the freezing to the end of the melting of 
the frozen layer. It is further observed that this ratio remains unchanged with respect to the total time of the 
freezing and melting for all values of C of considered. Both melting and heating depth of the additive increase 
fast in the beginning, but as the time passes, they follow almost a linear behavior with time.  Moreover, the 
frozen layer takes 25.48% of the total time of the freezing and melting and the melting of this layer is completed 
in 74.51% of this total time. These lead to time ratio of the growth of this frozen layer and its melting is 

approximately 3
1:4

1  . It is exactly the same that was obtained earlier [14] but of the additive of higher 

melting temperature than that of the bath material.  
⧉ Influence of conduction factor, COF  
For particular values of θab and Sta, Figure (2) shows the time variant freezing and melting, Rbm*of the bath 
material for different Cof. As stated above, its behavior for each Cof is parabolic, but its size reduces with 
decreasing Cof indicating the reduction in time of the freezing and melting, and smaller thickness of the frozen 
layer grown.  Corresponding melt depth and heat penetration depth, Figure (2) in this reduced time diminish. 
Physically, these predictions appear to be realistic since for a certain additive-bath system, decrease in Cof is 
indicative of increase in the bath agitation and, in turn, convective heat transfer co-efficient and associated bath 
convective heat. As the heat conducted to the additive is sum of the bath convective heat and the latent heat 
of fusion evolved due to freezing of the bath material onto the additive, the increased convective heat reduces 
the requirement of the latent heat of fusion owing to which formation of the smaller thickness of the frozen 
layer takes place, Figure (2). 

 
Figure 2: Time dependent freezing and melting of the 
bath material and the corresponding melt depth and 

heat penetration depth in the additive for different 
conduction factors, Cof. θab and Sta of the additive are 

taken as parameters 

 
Figure 3: Conduction factor, Cof variant maximum frozen 

layer thickness, MRbm
*, its growth time τmax/γ and the total 

time of the freezing and melting of the bath material τt/γ, 
along with melt depth, Ramt

* when heating front reaches 
the central axis of the additive for prescribed θab and Sta 

For those values of θab and Sta, stated in Figure (2), Figure (3) displays the plots for the growth of the maximum 
frozen layer thickness, MRbm*, the time for its formation, τmax* and total time of the freezing and melting, τt*, with 
Cof. The corresponding melt depth, Ramt

* when the heat penetration depth, Rai
* reaches the central axis of the 

additive is also exhibited in the same Fig.(3). It is observed that MRbm
* increases with a faster rate for Cof<0.02, 

whereas it rises almost linearly with Cof when Cof >0.02. Its time of formation follows a non-linear behavior with 
Cof. The total time of freezing and melting with respect to Cof   is also non- linear but its value increases with 
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much faster rate as compared with the rate of increase in τmax
*  when Cof increases, Figure (3). However, the melt 

depth Ramt
* varies linearly with increase in Cof.   

⧉ Effect of stefan number, STA of the additive  
Displayed in Figure (4), variation of the freezing and melting of the bath material and related melting and 
heating of the additive with time for different Sta. They are for certain Cof and θab. Here also, the freezing and 
melting of the bath material follows parabolic shape for each of Sta, whereas the melt depth and heat 
penetration depth increase fast during onset of the freezing but their rate of increase becomes slow with 
passing of the time. Decreasing Sta increases the size of the parabola, the maximum thickness of the frozen layer, 
the time taken in its growth, the time of its melting and the total time of the freezing and melting. In this time 
period, both the melt depth and the heat penetration depth increase. These findings can be corroborated from 
the facts that decreasing Sta is due to increase in the latent of fusion of the additive resulting in  increase in the 
requirement of the total heat which is to be conducted to the additive through the interface. As for the 
prescribed Cof, the convective heat from the bath remains unaltered, the increased total heat is balanced only 
by the increase in the latent heat of fusion generated through freezing the larger thickness of the bath material 
onto the additive, Figure (4). Sta variant  the maximum frozen layer thickness, MRbm

*, its time of formation, τmax
*, 

the total time of  the freezing and melting, τt
* and the melt depth, Ramt

* in the additive in case of heat penetration 
depth reaching the central axis of the additive ( )0R ai →  are plotted in Figure (5) for given Cof and θab. It is 
observed that MRbm

* decreases and Ramt
* increases fast, whereas reduction in τt

* and  τmax
* is small when Sta resides 

below the value of 5. For Sta > 5, slow decrease in MRbm
* is observed, but  τt

* and  τmax
* remain almost invariant. 

The rise in Ramt
* is slow Figure (5). 

 
Figure 4: Behavior of  freezing and melting of the bath 
material and the corresponding melt depth and heat 

penetration depth in the additive for different Sta 
conduction factor, Cof and melting temperature-ratios, 

θab are assumed to be parameters 

 
Figure 5: Sta variant maximum frozen layer thickness, MRbm

*, 
its growth time τ*

max and the total time of the freezing and 
melting of the bath material τ*

t along with related melt 
depth when the heat penetration depth in the additive 
approaches its central axis. Cof  and θab are employed as 

parameters 
⧉ Impact of temperature-ratio, Θab 
Fig.(6) exhibits time dependent freezing and melting of the bath material around the additive along with 
melting and heating of the additive for various θab. They are for prescribed Cof and Sta. The features of the graphs 
are similar to those appeared in Fig.(2). When θab is allowed to decrease, the parabola denoting freezing and 
melting gets smaller. It leads to reduction in the maximum thickness of the frozen layer, its time of formation, 
the total time of the freezing and melting and the time of the melting of the frozen layer. Also, this diminished 
time reduces both the melt and the heat penetration depths in the additive. Physically, they are true since 
decreasing θab decreases the melting temperature of the additive or increasing the initial temperature of the 
additive. It results in the reduction in sensible heat and, consequently, decrease in the total heat requirement 
to be conducted to the additive through the interface. Because for a given Cof the convective heat available 
from the bath is unchanged, this decreased heat requirement is met  by less amount of latent heat of fusion,  
which becomes available, once a smaller thickness of the bath material freezes onto the additive, Fig.(6). The 
effect of θab on the total time of freezing and melting τt*, the maximum growth of the frozen layer thickness, 
MRbm*, the time of its formation τ*max and the melt depth Ramt*  in the additive in case of certain Cof and Sta is 
depicted in Fig.(7). It shows that τt*,  MRbm

* and τ*max increase almost linearly whereas Ramt
*  decreases fast but  

linearly once  θab is allowed to  increase from   0.05 to 0.1 ( )1.005.0 ab ≤θ≤ . 
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Figure 6: Time variant freezing and melting of the bath 
material and the corresponding melt depth and heat 
penetration depth in the additive for different Stefan 

number, Sta, Cof.  and θab are taken as parameters 

 
Figure 7: Variation of  maximum frozen layer thickness, 
MRbm

*, its growth time τ*
max and total time of freezing 

and melting of the bath material τ*
t along with the 

corresponding melt depth of the additive with different 
θab in case of heat penetration reaches the central axis 

of the additive, Cof  and  Sta act as parameters 
⧉ Model application to manufacturing processes 
The model just presented gives closed-form solutions for 
the freezing and melting of the bath material onto the 
additive and the heating and melting of the additive. 
These solutions are applied to predict the freezing and 
melting behavior of the steel bath material [12] onto 
additives made of different materials, Table-1, employed 
in manufacturing process. Each of these additives is of 
0.025 m diameter. The figure exhibits that the freezing 
and melting of the bath material on to Bismuth takes 
much less time than Tin for their same diameter.  Fig.8. 
9. CONCLUSIONS 
A non-dimensional lump-integral model is evolved for 
the freezing and melting of agitated bath material onto 
a low melting temperature solid additive of cylindrical 
type when the thermal resistance of the frozen layer 
developed is negligible with respect to that of the additive. It gives  closed-form expressions for the freezing 
and melting of the bath material and the associated heating and melting of the additive in terms of 
independent non-dimensional parameters, the melting temperature ratio, θab, the Stefan number, Sta of the 
additive and the conduction factor, Cof. The maximum frozen layer thickness grew, its time of growth and the 
freezing and melting time are obtained in terms of these θab, Sta and Cof. They are reduced by increasing Sta for 
prescribed Cof and θab, or decreasing Cof for given θab and Sta, or decreasing θab for certain Sta and Cof .  The model 
is tested by validating it after its transformation to only melting of the additive with that of the literature.  When 
there is no bath convective heat, only freezing occurs. Its close-form expression is also found. 

NOMENCLATURE 
Bi Biot number, hra/Ka 

Bim Modified Biot number, (hra/Ka)*(KaCa/KbCb) 
C heat capacity  (ρ Cp), Jm-3 K-1  
Cof      conduction factor, 1/ γBim(θb-1), 1/ Bi(θb-1), 
Cof m  modified conduction factor,  Cof  (θab-1) 
Cp specific heat, (J Kg -1K-1) 
Cr heat capacity ratio, Cb/Ca 

h heat transfer coefficient, Wm-2 K-1 
K thermal conductivity, Wm-1 K-1 
L latent heat of fusion, JKg-1 
r radius, m 
Rah non-dimensional radius in the heat penetration 

region of the additive, (rah/ra) 

Rai non-dimensional radius of the heat penetration front 
in the additive at any time, (rai/ra)  

Rbf non-dimensional radius within the frozen layer region, 
(Cbrbf/Cara) 

Rbm non-dimensional radius of the frozen layer front at 
anytime, (Cbrbm/Cara) 

Sta Stefan number of the additive, Ca(Tbm-Tai)/La ρa 
Stb Stefan number of the bath material, Cb(Tbm-Tai)/Lb ρb 
t time, s 
T temperature, K 
Tb bulk temperature of the bath material, K 
Te instant equilibrium temperature at the interface 

between the additive and the frozen layer, K 
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Figure 8: Time dependent freezing and melting of the 
bath materil onto the additive often employed in steel 

manufacturing  along with associated time variant 
melting and heating of additive 
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GREEK LETTERS      
α thermal diffusivity, m2 s-1 
γ property ratio, (KbCb/KaCa) 
ρ density, (Kgm-3) 
θ non-dimensional temperature, (T-Tai/Tbm– Tai) 
θab    ratio of melting or freezing temperature of the 

additive  that of the bath, (Tam-Tai)/(Tbm-Tai) 

τ non-dimensional time,(KbCb/Ca
2 r0

2)t = 2
a

a

r
tγα

 

τ* non-dimensional time per unit property ratio 
 

SUBSCRIPTS 
a  cylindrical additive, 
ai       initial condition of additive, 
af within melting or freezing region of  additive, 
ah within heating  region of  additive, 
am melting or freezing of  additive, 
b        frozen bath material or bulk condition of bath material, 
bf within melting or freezing region of bath material, 
bm melting or freezing condition of bath material, 
e  interface condition, 
max  for maximum frozen layer  development, 
t for total time of freezing and melting 
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