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Abstract: This paper deals with analysis of thermal vibration behaviour of orthotropic single-layered nanoplate with 
various boundary conditions. The new first-order shear deformation theory is reformulated using nonlocal differential 
constitutive relation of Eringen. The governing equations of motion are derived from Hamilton's principle. Using 
Galerkin method, analytical solution for rectangular nanoplates under various boundary conditions are obtained. 
Numerical results are presented to show variations of the dimensionless frequency of single-layered nanoplates 
corresponding to various values of the nonlocal parameter and temperature change. 
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1. INTRODUCTION 
In recent years, nanostructures such as carbon nanotube, nanobeam and nanoplate have received considerable 
attention because of their mechanical, electrical and other physical and chemical properties. Graphene presents 
one of the physical forms of carbon and it is the best known nanoplate. Besides graphene, carbon atoms also 
occur in the form of carbon nanotubes which can be observed as a deformed form of graphene. Graphene 
sheets and carbon nanotubes present the nanoscale objects and they are very significant parts of nano/micro 
structures. Nanoplates are expected to have a wide range of applications, including gas sensors [1], medicines 
[2], electronics [3] and nanoelectro-mechanical systems [4]. The application of Molecular Dynamics (MD) 
simulation [5] has clearly demonstrated that the small-scale effects in the analysis of the mechanical behaviour 
of nanostructures cannot be neglected and that the classical continuum theory can be applied, according to 
the fact that it is a size independent theory. Classical elasticity theory is a scale free theory and cannot handle 
small effects. As a result, the mechanical behaviour of the nanostructures cannot describes by classical elasticity 
theory. With the aim to overcome this problem, some size dependent non-classical continuum theories have 
been developed, such as strain gradient theory [6], modified couple stress theory [7], and nonlocal elasticity 
theory [8]. 
These three theories have been developed to include a size effect to the mechanical behaviour of 
nanostructures by introducing the internal length scale. Among these theories, the nonlocal elasticity theory 
initiated by Eringen [9] is the most used one. In Eringen’s nonlocal elasticity theory the small scale effects have 
been taken into account assuming that the stress in the observed point depends on the deformations in all 
other points of the entire domain occupied by the material. To date, buckling of nanoplates [10], their vibrations 
[11], thermal buckling [12,13], and thermal vibration [14,15] have been studied via the nonlocal elasticity theory 
of Eringen. In the present study, using Eringen’s nonlocal differential constitutive relation local new first-order 
shear deformation theory (NFSDT) has been reformulated 
and used for the analysis of the vibration of orthotropic 
single-layered graphene sheets (SLGSs) embedded in an 
elastic medium. To the best of the research’s knowledge 
vibration analysis of SLGSs in thermal environment under 
various boundary conditions has not been investigated in 
the available literature. Also, the in-plane effects of 
boundary conditions on thermal vibration of orthotropic 
SLGSs has not been discussed yet. 
2. BASIC FORMULATIONS AND ASSUMPTIONS 
A schematic configuration of the orthotropic SLGSs of 
length of each sheet a , width b , and uniform thickness h  
resting on a Pasternak foundation has been illustrated on 

 

Figure 1. Single-layered orthotropic graphene sheet 
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Figure 1. As can be seen nanoplates are surrounded by an external Pasternak elastic medium, which includes 
Winkler modulus parameter WK  and shear modulus parameter GK . 
The Cartesian coordinate system is considered such that the x, y and z axes are along the length, width, and 
thickness of nanoplate. 
According to the NFSDT, the displacement field, taking into account the shear deformation effect, can be 
expressed as 
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where w  is the transverse displacement of the material point (x, y) in the mid-plane and φ  is function of 
coordinates x, y and time t. 
Based on the nonlocal continuum theory of Eringen the nonlocal stresses are generally related to the local 
ones through the following relation : 

2 2
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where ( )ij xσ  is the nonlocal stress tensor, 2∇  is the Laplacian operator which is defined by 
2 2 2 2 2( / / )x y∇ = ∂ ∂ + ∂ ∂ , 0e  is the nonlocal parameter that takes into account the small scale effects into the 

constitutive equations, ijklC  is the fourth-order elasticity tensor, klε is the strain tensor, ijα is the thermal 

expansion coefficient, and T  is the value of the temperature change. The nonlocal parameter is commonly 
adjusted based on the predicted frequencies by anappropriate atomic model. Thereby, the nonlocal moments 
and forces of the nanoplate are related to their local counterparts as, 
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where  SK  is the shear correction factor. As widely accepted, the approximate value for shear correction factor 
is 5 6SK = . 
By adopting Hamilton’s principle, the equations of motion can be expressed as follows: 
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If we apply the operator 2 2
01 ( )eℜ = − ∇  to Eq.(6) and  substitute Eqs. (3) and (4) into the resulting equation 

then equations of motion can be expressed via the displacement ( , )w φ . 
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3. ANALYTICAL SOLUTION 
In this study, we will analyse four types of boundary conditions (SSSS, SCSC, CCCC, C1CC1C). The mark SCSC 
means that the edges of the nanoplate 0,x a=  are simply supported-immovable (S), while the edges 0,y b=  
are clamped-immovable (C). In C1 supports, the free displacement in the plane of the nanoplate is allowed due 
to the increase of temperature, so the nanoplate in these supports cannot be loaded. 
The analytical solution of Eqs. (7)-(8) that satisfy the above boundary conditions can be obtained for rectangular 
nanoplates under various boundary conditions by using the following expressions of generalized 
displacements: 
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In this paper, the Galerkin’s method is employed for solving the equations of motion for SLGSs with various 
boundary conditions. By using Eq. (9) and applying the Galerkin’s method to Eqs. (7)-(8), the analytical solution 
can be obtained from 
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The  solution Eq. (10) has the following form: 
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n Eq.(12)  the mark for nonlocal parameter 0g e=   has been used. 
The values  1 2 3 4 5 6 1 2, , , , , , ,T T T T T T V V  and 3V  depend on boundary conditions: 
 
a) SSSS nanoplates 
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b) SCSC nanoplates 
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c) CCCC, C1CC1C nanoplates 
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where m aα π= , n bβ π= , m and n are the half wave number. 
4. NUMERICAL RESULTS AND DISCUSSION 
In this section, based on nonlocal NFSDT, numerical results for vibration are presented for the orthotropic SLGSs 
embedded in an elastic medium with various cases of boundary conditions. Geometrical and material 
properties of the orthotropic graphene sheet are presented as 
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The following dimensionless parameters are used: 
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a) b) 
Figure 2 Variation of dimensionless frequency versus temperature rise for various nonlocal 

parameter corresponding to a) SSSS nanoplates and b) SCSC nanoplates 
Figures 2a-b depict the effect of the temperature rise on the dimensionless frequency for different boundary 
conditions (SSSS, SCSC). For both boundary conditions, with the increase value of temperature and nonlocal 
parameter the dimensionless frequency value decreases. 
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 a)  b) 
Figure 3. Variation of dimensionless frequency versus temperature rise for various Winkler parameter  

corresponding to a) CCCC nanoplates and b) C1CC1C nanoplates 
The influence of the temperature rise and elastic foundation stiffness (Winkler parameter) on the dimensionless 
frequency for two different boundary conditions (CCCC, C1CC1C) is shown in Figs.3a-b. For both boundary 
conditions, with the increase value of temperature the dimensionless frequency value decreases. For both 
boundary conditions, with the increase value of Winkler parameter the dimensionless frequency value 
increases. 
6. CONCLUSION 
Based on the Eringen’s nonlocal elasticity theory and the new first order shear deformation theory, the general 
equations for transverse vibrations of orthotropic single-layered graphene sheets embedded in an elastic 
medium and subjected in-plane edge thermal loads with different boundary conditions are formulated. 
Using the Galerkin’s method, the analytical solutions for vibrational frequency of the system with four various 
boundary conditions are obtained. Numerical results show the effects of the nonlocal parameter, temperature 
rise, elastic foundation parameter and boundary conditions on the dimensionless frequency. 
For all boundary conditions (SSSS, SCSCS, CCCC, C1CC1C), with the increase value of temperature and nonlocal 
parameter the dimensionless frequency value decreases. 
Note 
This paper is based on the paper presented at 13th International Conference on Accomplishments in Mechanical 
and Industrial Engineering – DEMI 2017, organized by University of Banja Luka, Faculty of Mechanical Engineering, in 
Banja Luka, BOSNIA & HERZEGOVINA, 26 - 27 May 2017. 
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