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Abstract: In present work a model of dynamic finite element for vibration analysis of reticulate systems is proposed. 
It is proposed a method of construction of dynamic stiffness matrices and inertia matrices for the cases of bending, 
traction and torsion in free and forced vibrations. From exact analytical solutions of vibration equations it is 
established the dynamic shape functions allowing obtaining the coefficients of dynamic stiffness matrices and inertia 
matrices. These coefficients depend on frequency of free vibrations of the system. This dynamic finite element model 
allows obtaining an exact solution for reticulate systems in classical approach of the dynamic analysis of structures. 
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1. INTRODUCTION 
The study on dynamics of reticulate systems in recent years knows a renewed interest due to the increasing 
number of industrial projects with design of large span structures subject to solicitations of dynamic origin 
(sport and commercial building covers, metal bridges in seismic zones, naval and aeronautical constructions). 
Many works related to the design of such structures are available in the technical literature [1-5]. There are many 
methods to improve reticulated bar models, for example, focus on the consideration of shear deformations, 
Saint-Venant's solutions and variational asymptotic solutions. Some works focused on the use of shear 
correction coefficients to improve the accuracy of calculations [6-9]. These correction coefficients often used in 
static analysis of structures are not always effective in case of dynamic analysis. It is shown by [10] that these 
coefficients may depend on own frequencies of bar vibrations. The disadvantage is that there is not generalized 
approach for the determination of shear correction coefficient [11-12]. Another approach for analysis of 
dynamic behavior of reticulated structures is the method of homogenization of discrete periodic media [13] 
which allows a more thorough description of the physical functioning of the discrete element [14-15]. 
Homogenization of periodic reticulate systems proceeds in two steps [16]: discretization of the dynamic 
balance then actual homogenization, leading to the continuous model developed from the discreet 
representation. Another method known for vibration analysis of reticulate systems is the dynamic stiffness 
method developed by [17-23]. This method involves a dynamic stiffness matrix established in a frequency 
domain using dynamic shape functions obtained from the exact solutions of governing differential equations 
[24]. The main disadvantage of this method is that it does show its effectiveness in the case of free vibrations. 
In case of forced vibrations it seems hardly applicable. Another method developed by [24] is the method of 
spectral elements which consists in coupling spectral analysis method with dynamic stiffness method. In first 
step will be a discretization of the structure then it sets the dynamic stiffness matrix. The transformation of this 
matrix is done according to the algorithm of fast Fourier transformation. After solving the resulting system of 
equations it performs a reverse transformation where one gets a time-dependent solution therefore a spectral 
analysis method.  
In this work it is proposed a dynamic finite element model in free and forced vibrations built using shape 
functions obtained from exact analytical solutions of vibration equations for the cases of traction, bending and 
torsional deformations. 
2. MATERIAL AND METHOD 
For the problem in dynamics we will consider that the discretization concerns the rigidity and inertia parameters 
of the system. On the other hand the displacement of any point of the element will be according to nodal 
displacements qi : 

u(z, t) = ∑ qi(t)fi(z)i  ,          (1) 
fi(z) - Selected shape functions such as displacements of any point are continuing both within the element 
and in limits of neighboring elements. 
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The dynamic problem solving in structural mechanics by finite element method, is in most cases to find 
solutions to very complicated elliptic problems. Establishing basic or shape functions is decisive for the sought 
accuracy level [25]. These shape functions can be presented as gradients of harmonic functions in Hilbert spaces 
and are determined by collocation method [26-27]: 

Ni(z) = ∑ aj
(i)fg(j)(z)m

j=1            (2)  

aj
(i) -  Unknown coefficients, g(j) - index function, j=1,…m. Functions fg(j)(z)  are chosen in following forms:  

pn+1,k+1(z) = σnk( r
r0

)ncos (kφ)Pnk(cosθ)          (3) 

qn+1,k+1(z) = σnk( r
r0

)nsin (kφ)Pnk(cosθ)          (4)                

For z = (r, θ, φ) we have: σnk = (2n+1)(n−k)!
(n+k)!

  which are calculated by the recurrent formulae that appear in the 

general solution of Dirichlet problem for a sphere interior radius r0  [28]. 
Unknown coefficients can be calculated by solving following system: 

∑ aj
(i)fg(j)(zi) = δ(zi, zj)m

j=1  , j=1,…m              (5) 
Index function g (j) is selected such that the system is soluble [28]. Approximation accuracy using functions 
Ni(z) is determined by the degree of harmonic terms of function fg(j) , (j=1 ;…m) for which approximation (1) 
is exact. 
3. RESULTS AND DISCUSSION 
⧉ Construction of Dynamic Stiffness Matrices 
— Axial vibrations of the bar in traction 
The bar finite element in traction is shown in figure 1. 

Governing equation is given by: 
∂2u
∂t2

− a2 ∂
2u
∂z2

= 0 ,          (6) 
Sought solution for equation (6) is harmonic type [29]: 

u(z, t) = U(z)cos (kt + φ)                    (7) 
U (z) is amplitude function. Amplitude function for 
equation (6) has the following expression: 

U(z) = c1cos αz + c2sinαz      (8) 

Here ∝= k
a
  , k - own frequency, a - wave propagation speed; a = �E

ρ
 , E and ρ are respectively the elastic 

modulus and the density of the material. 
The coefficients c1 and c2 determine shape functions f1(z) and f2(z) and can be expressed by the nodal 
displacements q1 and  q2 : 

q1 = U(0) = c1          (9) 
q2 = U(l) = q1cos ∝ l + c2sin ∝ l         (10) 

c2 = q2−q1cos∝l
sin∝l

        (11) 
In our case we considered that the origin of the local coordinate system is  q1 . 
By replacing expressions (9) and (10) in (8) we get: 

U(z) = q1cos ∝ z + (q2 − q1cos ∝ l) 1
sin∝l

sin ∝ z = 

         = q1(cos ∝ z − ctg ∝ lsin ∝ z) + q2
sin∝z
sin∝l

 .                         (12)                               
Thus finite element shape functions of bar in traction will have following expressions: 

f1(z) = cos ∝ z − ctg ∝∝ lsin ∝ z        (13) 
f2(z) = sin∝∝z

sin∝l
       (14) 

Finite element stiffness matrix for figure 1 have dimension 2 x 2: 

C = �
c11 c12
c21 c22�         (15 ) 

Coefficients of this matrix are determined by following relationship: 

cij = ∂2Π
∂qi ∂qj

                   (16) 

Π - Potential energy of the system [30]. Particularly for the bar we have:  

cij = EF∫ fi′(z)fj′(z)dzl
0              (17) 

F - The bar section 

 
Figure 1. Traction bar finite element 
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From expression (17) it is clear that the bar element stiffness matrix is a symmetric matrix. 
By deriving expressions (13) and (14) we get: 

f1′(z) = −αsinαz− ctgαlcosαz          (18)            
f2′(z) = αcosαz

sinαl
       (19) 

By replacing expressions (18) and (19) into (17) we get: 
c11 = c22 = EFα

4sin2αl
(2αl + sin2αl)        (20) 

c12 = C21 = − EFα
2sin2αl

(sinαl + αlcosαl)            (21) 
Finally finite element stiffness matrix in traction will be: 

C(α) = �
EFα

4sin2αl
(2αl + sin2l − EFα

2sin2αl
(sinαl + αlcosαl)

− EFα
2sin2αl

(sinαl + αlcosαl EFα
4sin2αl

(2αl + sin2αl
�       (22) 

As shown in expression (22) stiffness matrix coefficients depend on the frequency of free vibrations. 
— Free vibrations in bending 
The bar finite element under bending is shown in figure 2. Each node is associated with two freedom degrees: 

a vertical displacement and rotation. The free vibration 
governing equation in bending is given by: 

EI ∂
4y
∂z4

+ m0
∂2y
∂t2

= 0             (23) 
I - bar inertia moment in bending 
m0 - The mass of unit length. 
Sought solution for equation (23) has following form [29]: 

y(z, t) = Y(z)cos (kt + φ)                  (24) 
Y (z) is amplitude function satisfying conditions at the ends; k - Free vibrations frequency. 
Equation (23) amplitude function has following form: 

Y(z) = A1ch ∝ z + A2sh ∝ z + A3cos ∝ z + A4sin ∝ z           (25)  

Here  ∝= �m0k2

EI
 . 

The dynamic shape functions are determined from four nodal conditions: 
≡ First condition: 

q1 = 1, q2 = q3 = q4 = 0                               (26)  
Taking into account expression (25), we have: 

q1 = Y(0) = A1 + A3 = 1 , 
A3 = 1 − A1       (27) 

q2 = Y′(0) =∝ (A2 + A4) = 0 , 
A4 = −A2                  (28)  

q3 = Y(l) = A1ch ∝ l + A2sh ∝ l + A3cos ∝ l + A4sin ∝ l = 0                 (29)         
q4 = Y′(l) =∝ (A1sh ∝ l + A2ch ∝ l − A3sin ∝ l + A4cos ∝ l) = 0       (30) 

Replacing expressions (27) and (28) respectively in (29) and (30) we will have: 
A1(ch ∝ l − cos ∝ l) + A2(sh ∝ l − sin ∝ l) = −cos ∝ l                       (31)            

A1(sh ∝ l + sin ∝ l) + A2(ch ∝ l − cos ∝ l) = sin ∝ l        (32)         
Solving the system of equations (31) and (32) and taking into account (27) and (28) we get expressions for the 
coefficients of first shape function. If we designate these coefficients by A11,  A12, A13 et A14, the first shape 
function will have following expression: 

fb1(z) = A11ch ∝ z + A12sh ∝ z + A13cos ∝ z + A14sin ∝ z ,            (33) 
and the coefficients of first shape function will be: 

A11 = 1−ch∝lcosl−sin∝lsh∝l
2(1−ch∝lcos∝l)

        (34) 

A12 = ch∝lsin∝l+cos∝lsh∝l
2(1−ch∝lcos∝l)

        (35) 

A13 = 1−ch∝lcos∝l+sin∝lsh∝l
2(1−ch∝lcos∝l)

        (36) 

A14 = −ch∝lsin∝l−cos∝lsh∝l
2(1−ch∝lcos∝l)

        (37) 

≡ Second condition: 
q2 = 1 , q1 = q3 = q4 = 0.       (38) 

 
Figure 2. Bar finite element in bending 
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Taking into account expression (25), we have: 
q1 = Y(0) = A1 + A3 = 0 , 

A3 = −A1     (39) 
q2 = Y′(0) =∝ (A2 + A4) = 1 , 

A4 = 1
∝
− A2       (40) 

Expressions q3 and  q4 will remain unchanged in the forms (22) and (23). 
Replacing expressions (39) and (40) respectively in (29) and (30), we get following system of equations: 

A1(ch ∝ l − cos ∝ l) + A2(sh ∝ l − sin ∝ l) = − 1
∝

sin ∝ l       (41) 

A1(sh ∝ l + sin ∝ l) + A2(ch ∝ l − cos ∝ l) = − 1
∝

cos ∝ l       (42) 
Solving the system of equations (41) and (42) and taking into account (39) and (40), we get expressions for the 
second shape function coefficients. Designating these coefficients byA21, A22, A23 et A24, the second shape 
function will be as following expression: 

fb2(z) = A21ch ∝ z + A22sh ∝ z + A23cos ∝ z + A24sin ∝ z ,           (43) 
and the second shape function coefficients will be: 

A21 = sin∝lch∝l−cos∝lsin∝l
2∝(1−ch∝lcos∝l)

        (44) 

A22 = 1+sh∝lsin∝l−ch∝lcos∝l
2∝(1−ch∝lcos∝l)

          (45) 

A23 = cos∝lsin∝l−sin∝lch∝l
2∝(1−ch∝lcosl)

        (46)           

A24 = 1−sh∝lsin∝l−ch∝lcos∝l
2∝(1−ch∝lcos∝l)

        (47) 

≡ Third condition: 
q3 = 1, q1 = q2 = q4 = 0        (48) 

Taking into account expression (25), we have: 
q3 = Y(l) = A1ch ∝ l + A2sh ∝ l + A3cos ∝ l + A4sin ∝ l = 1      (49)               

Expressions q1, q2 and q4 will not change forms (39), (28) and (30) respectively. 
Replacing (39) and (28) in (49) and (30) we get following system of equations: 

A1(ch ∝ l − cos ∝ l) + A2(sh ∝ l − sin ∝ l) = 1       (50)               
A1(sh ∝ l + sin ∝ l) + A2(ch ∝ l − cos ∝ l) = 0        (51)              

Solving this system of equations and taking into account (39) and (28), we get expressions of the third shape 
function coefficients A31, A32, A33 et A34. So the third shape function will be written: 

fb3(z) = A31 = ch ∝ z + A32sh ∝ z + A33cos ∝ z + A34sin ∝ z .     (52)              
The third shape function coefficients will be: 

A31 = ch∝l−cos∝l
2(1−ch∝lcos∝l)

                                                     (53) 

A32 = −sh∝l−sin∝l
2(1−ch∝lcos∝l)

                                                     (54) 

A33 = cos∝l−ch∝l
2(1−ch∝lcos∝l)

                                                      (55) 

A34 = sh∝l+sin∝l
2(1−ch∝lcos∝l)

                                                      (56) 

≡ Fourth condition: 
q4 = 1, q1 = q2 = q3 = 0 .       (57) 

Taking into account the expression (25), we have: 
q4 = Y′(l) =∝ (A1sh ∝ l + A2ch ∝ l − A3sin ∝ l + A4cos ∝ l) = 1  .    (58) 

Expressions q1 , q2 and  q3 are unchanged under forms (39), (28) and (29) respectively. Replacing (39) and (28) 
in (58) and (29) we get following system of equations: 

A1(ch ∝ l − cos ∝ l) + A2(sh ∝ l − sin ∝∝ l) = 0     (59)        
A1(sh ∝ l + sin ∝ l) + A2(ch ∝ l − cos ∝ l) = 1

∝
 .                                         (60) 

Solving this system of equations and taking into account (39) and (28) we get expressions for the fourth shape 
function coefficients A41, A42, A43 and  A44 . 
The fourth shape function will have following expression: 

fb4(z) = A41ch ∝ z + A42sh ∝ l + A43cos ∝ z + A44sin ∝ z ,               (61) 
and the fourth shape function coefficients will be: 

A41 = sin∝l−sh∝l
2∝(1−ch∝lcos∝l)

                                                       (62) 
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A42 = ch∝l−cos∝l
2∝(1−ch∝lcos∝l)

                                                         (63) 

A43 = sh∝l−sin∝∝l
2∝(1−ch∝lcos∝∝l)

                                                          (64) 

A44 = cos∝l−ch∝l
2∝(1−ch∝lcos∝l)

                                                       (65) 

Let’s introduce following notations: 
R1 = sh ∝ lch ∝ l , R4 = sin ∝ lcos ∝ l,      R7 = ch ∝ l − cos ∝ l, 
R2 = sh ∝ lcos ∝ l , R5 = sh ∝ lsin ∝ l,        R8 = sh ∝ l + sin ∝ l, 
R3 = ch ∝ lsin ∝ l ,    R6 = ch ∝ lcos ∝ l,       R9 = sh ∝ l − sin ∝ l .                           (66)) 

Then, taking into account the expressions (66), the shape functions become: 

fb1(z) = 1
2(1−R6)

�
(1 − R5 − R6)cos ∝ z + (R2 + R3)sh ∝ z

+(1 + R5 − R6)cos ∝ l − (R2 + R3)sin ∝ z�           (67) 

fb2(z) = 1
2∝(1−R6)

�
(R2 − R3)ch ∝ z + (1 + R5 + R6)sh ∝ z

+(R3 − R2)cos ∝ z − (1 − R5 − R6)sin ∝ z�           (68) 

fb3(z) = 1
2(1−R6)

(R7ch ∝ z − R8sh ∝ z − R7cos ∝ z + R8sin ∝ z)          (69) 

fb4(z) = 1
2∝(1−R6

(−R9ch ∝ z − R7sh ∝ z − R9cos ∝ z + R7sin ∝ z)             (70) 

The stiffness matrix of finite element shown in figure 2 is 4 x 4 size: 

=C


















44434241

34333231

24232221

14131211

cccc
cccc
cccc
cccc

      (71) 

The stiffness matrix coefficients are determined by relationship (16). Particularly in the case of bending we have: 

Cij = EI∫ fi′′(z)fj′′(z)dzl
0                      (72) 

It is obvious that from the expression (72), element stiffness matrix in bending is a symmetric matrix. 
By substituting the second order derivatives of expressions (67), (68), (69) and (70) in (72) we get after 
mathematical transformations, expressions of the stiffness matrix coefficients. 
Let’s introduce following notations: 

H1 = R1 + 2R2 + 2R3 + R4 + 2 ∝ l              (73) 
H2 = R1 − 2R2 + 2R3 − R4         (74) 

H3 = (sh ∝ l + sin ∝ l)2                   (75) 
H4 = R2 + R3 + R4+∝ l                        (76) 
H5 = R5 + R6 − cos2 ∝ l                    (77) 

H6 = R5 − R6 + 1 + sin2 ∝ l         (78) 
R7 = R3 − R2 − R4+∝ l .      (79) 

Finally the stiffness matrix coefficients will be: 

c11 = EI∝3

2
[A112 H1 + A122 H2 + 2A11A12H3 − 2A11H4 − 2A12H5+∝ l + R4]                  (80) 

c22 = EI∝3

2
�A21

2 H1 + A22
2 H2 + 2A21A22H3 −

2
∝

(A21H6 + A22H7) + 1
∝2

(∝ l − R4)�                 (81) 

c33 = EI∝3

2
[A31

2 H1 + A32
2 H2 + 2A31A32H3]          (82) 

c44 = EI∝3

2
[A41

2 H1 + A42
2 H2 + 2A41A42H3]                                                   (83) 

c12 = c21 = EI∝3

2
�

A11A21H1 + A12A22H2 + (A11A22 + A12A21)H3

− 1
∝

(A11H6 + A12H7 − sin2 ∝ l) − A21H4 − A22H5
�                                   (84)   

c13 = c31 = EI∝3

2
[A11A31H1 + A12A32H2 + (A11A32 + A12A31)H3 − A31H4 − A32H5]                 (85) 

c14 = c41 = EI∝3

2
[A11A41H1 + A12A42H2 + (A11A42 + A12A41)H3 − A41H4 − A42H5]                 (86) 

c23 = c32 = EI∝3

2
�A21A31H1 + A22A32H2 + (A21A32 + A22A31)H3 −

1
∝

(A31H6 + A32H7)�     (87) 

c24 = c42 = EI∝3

2
�A21A41H1 + A22A42H2 + (A21A42 + A22A41)H3 −

1
∝

(A41H6 + A42H7)�     (88) 

c34 = c43 = EI∝3

2
[A31A41H1 + A32A42H2 + (A31A42 + A32A41)H3]     (89) 
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Here ∝= �m0k2

EI

4
  , k – free vibration frequency. 

So we can see that stiffness matrix coefficients in case of bending depend on free vibrations frequency. 
— Torsional free vibrations 
Torsional finite element is shown in figure 3. 

Torsional free vibrations are described by following 
governing equation: 

∂2φ
∂t2

− β2 ∂
2φ
∂z2

= 0     (90) 
Sought solution for this equation is the same type for 
longitudinal vibrations [29]. So amplitude function for 
equation (90) can be written in following form: 

∅(z) = c1cosβz + c2sinβz               (91) 

Here  β = k
b

 , k - own frequency, b = �G
ρ

, G and ρ, shear modulus and density of the material respectively. 

Coefficients c1 and c2 determine the shape functions fk1(z) and fk2(z) and are functions of nodal 
displacements q1 and  q1 : 

q1 = ∅(0) = c1       (92) 
q2 = ∅(l) = q1cosβl + c2sinβl       (93) 

c2 = q2−q1cosβl
sinβl

    (94) 

By substituting expressions (92) and (93) in (91) we will have: 

∅(z) = q1cosβz + (q2 − q1cosβl) 1
sinβl

sinβz = q1(cosβz− ctgβlsinβz) + q2
sinβz
sinβl

             (95) 

So the shape functions of finite element in torsion will have following expressions: 
fk1(z) = cosβz− ctgβlsinβz         (96) 

fk2(z) = sinβz
sinβl

       (97) 

In the general case, the stiffness matrix coefficients are determined by relationship (16). For the particular case 
in torsion we have: 

ckij = GIk ∫ fki′ (z)fkj′ (z)dzl
0          (98) 

Where G and Ik are the shear modulus and torsional inertia moment respectively. 
It is obvious that obtained shape functions (96) and (97) are similar to the shape functions (13) and (14) for a bar 
in traction (figure 1). So the stiffness matrix coefficients will be similar to the stiffness matrix coefficients (20) and 
(21) of the bar finite element in traction: 

ck11 = ck12 = GIkβ
4sin²βl

(2βl + sin2βl)                     (99) 

ck12 = ck21 = − GIkβ
4sin²βl

(2sinβl + 2βlcosβl)                           (100) 

So finite element stiffness matrix in torsion will have following form: 

Ck(β) =

( ) ( )

( ) ( )
























β+β
β

β
ββ+β

β

β
−

ββ+β
β

β
−β+β

β

β

l2sinl2
l²sin4

GI
lcosl2lsin2

l²sin4

GI

lcosl2lsin2
l²sin4

GI
l2sinl2

l²sin4

GI

kk

kk

=             

l²sin4
GIk

β
β

( ) ( )

( ) ( ) 















β+βββ+β−

ββ+β−β+β

l2sinl2lcosl2lsin2

lcosl2lsin2l2sinl2
  (101) 

Here β = k/b, k - the natural frequency of the structure. 
We can see that the torsional stiffness matrix coefficients are function of free vibrations frequency. 
⧉ Construction of Inertia Matrices  
— Bar traction (compression) 
Inertia matrix of the bar finite element shown in figure 1 is 2 x 2 size: 

 
Figure 3. Torsional finite element 
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







=

2221

1211

mm
mm

M     (102) 

Inertia matrix coefficients in general case are determined by following expression [29]: 

mij = ∂²T
∂qi ∂qj

           (103) 

T - Kinetic energy of the system. 
For particular case in traction we have: 

mij = ∫ m0fi(x)fj(x)dxl
0         (104) 

𝑚𝑚0 - Mass of length unit of the bar. 
From expression (104) it is obvious that finite element inertia matrix in traction (or compression) is a symmetric 
matrix. 
By substituting (13) and (14) in (104) we get expressions for determination the inertia matrix coefficients: 

m11 = m22 = m0
2∝sin²∝l

�∝ l − 1
2

sin2 ∝ l�                         (105) 

m12 = m21 = m0
2∝sin²∝l

(sin ∝ l−∝ lcos ∝ l)                            (106) 
Finally, inertia matrix of the bar finite element in traction or compression will be: 



















α−ααα−α

αα−αα−α

αα
=α

l2sin
2
1llcosllsin

lcosllsinl2sin
2
1l

l²sin2
m

)(M 0                  (107) 

∝ = k/a, k - Natural frequency of the structure. 
From expression (107) it is obvious that inertia matrix coefficients depend on free vibrations frequency. 
— Case of bending 
Inertia matrix in case of bending of the bar finite element shown in figure 2 is 4 x 4 size: 



















=

44434241

34333231

24232221

14131211

mmmm
mmmm
mmmm
mmmm

M                       (108) 

In general case the inertia matrix coefficients are determined by expression (103). 
For the particular case of bending the inertia matrix coefficients have form (104).Inertia matrix for this case is 
also a symmetric matrix. 
By substituting the shape functions (67), (68), (69) and (70) in (104) and performing the corresponding 
mathematical transformations we get the inertia matrix coefficients. 
Let’s introduce the following notations: 

Hm1 = R1 − 2R2 − 2R3 + R4 + 2 ∝ l                    (109) 
Hm2 = R1 + 2R2 − 2R3 − R4           (110) 

Hm3 = (sh ∝ l − sin ∝ l)2       (111) 
Hm4 = R2 + R3 − R4−∝ l      (112) 
Hm5 = R3 + R4 − R2−∝ l      (113) 
Hm6 = R5 − R6 + cos² ∝ l      (114) 

Hm7 = R6 + R5 − sin2 ∝ l − 1 .         (115) 
Then the inertia matrix coefficients will be: 

m11 = m0
2∝

[A112 Hm1 + A122 Hm2 + 2A11A12Hm3 + 2A11Hm4 + 2A12Hm7+∝ l + R4]                    (116) 

m22 = m0
2∝
�A21

2 Hm1 + A22
2 Hm2 + 2A21A22Hm3 + 2

∝
�A21Hm6 + A22Hm5 + 1

∝²
(∝ l − R4)��         (117) 

m33 = m0
2∝

[A31
2 Hm1 + A32

2 Hm2 + 2A31A32Hm3]                         (118) 

m44 = m0
2∝

[A41
2 Hm1 + A42

2 Hm2 + 2A41A42Hm3]                                       (119) 

m12 = m21 = m0
2∝
�

A11A21Hm1 + A12A22Hm2 + (A11A22 + A12A21)Hm3

+ 1
∝

(A11Hm6 + A12Hm5 + A12Hm5 + A21Hm4) + sin² ∝ l�                    (120) 

m13 = m31 = m0
2∝

[A11A31Hm1 + A12A32Hm2 + (A11A32 + A12A31)Hm3 + A31Hm4 + A32Hm7]       (121) 
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m14 = m41 = m0
2∝

[A11A41Hm1 + A12A42Hm2 + (A11A42 + A12A41)Hm3 + A41Hm4 + A42Hm7]       (122) 

m23 = m32 = m0
2∝
�A21A31Hm1 + A22A32Hm2 + (A21A32 + A22A31)Hm3 + 1

∝
(A31Hm6 + A32Hm5)�   (123) 

m24 = m42 = m0
2∝
�A21A41Hm1 + A22A42Hm2 + (A21A42 + A22A41)Hm3 + 1

∝
(A41Hm6 + A42Hm5)�   (124) 

m34 = m43 = m0
2∝

[A31A41Hm1 + A32A42Hm2 + (A31A42 + A32A41)Hm3]                  (125) 

∝= �m0k2

EI

4
 , k - Free vibration frequency. 

We can see that for the case of bending the inertia matrix coefficients depend on free vibrations frequency. 
— Case of torsion 
The inertia matrix coefficients in general case are determined by expression (103). For particular case of torsion 
these coefficients have form (104): 

mij = ∫ θ0fki(z)fkj(z)dzl
0        (126) 

θ0- Unit angle of torsion, θ0 = ρIk . 
Similarly to the stiffness matrix for the case of traction, the inertia matrix coefficients will be:  

m11 = m22 = θ0
2βsin²βl

�βl − 1
2

sin2βl�      (128) 

m12 = m21 = θ0
4βsin²βl

(2sinβl− 2βlcosβl)                                (129) 

So inertia matrix in torsion will be: 

( )

( ) l2sin
2
1llcosl2lsin2

2
1

lcosl2lsin2
2
1l2sin

2
1l

l²sin2
)(M 0

k

β−βββ−β
β

ββ−β
β

β−β

ββ
θ

=β
                     (130) 

In expression (130) parameter β is equal to β = k/b; k - natural frequency of the structure. 
We can see that the inertia matrix coefficients depend on free vibrations frequency. 
The proposed dynamic finite element model is developed from the shape functions built on basis of the 
solutions of differential equations of vibrations. Equation of axial vibrations (6), established on basis of the flat 
section assumptions has an approximate solution because the inertia forces are not taken into account. Finite 
element obtained from this equation takes into account this aspect. We can expect an error in assessment of 
vibration for very high levels of frequencies. 
About the torsion, finite element obtained from equation (90) will have the same limitations as the equation. 
However we can expect great accuracy in the calculation of a bar with circular section. This finite element in 
torsion will be unusable for flat profiles because torsional vibration equation solving does not take into account 
axial displacements of the sections. 
As vibration equation in bending (23), its solving does not take into account the rotating inertia of bar sections 
this is why we can expect significant errors for evaluation of vibrations of short length bars. 
4. CONCLUSIONS 
From this work we can hold the following: 
» For vibration analysis of the bar systems it is proposed a dynamic finite element model where the shape 

functions are built from analytical exact solutions of governing equations of bar vibrations. 
» It's got the stiffness matrices and inertia matrices of bar finite elements in free vibrations for cases of bending, 

traction and torsion. 
» It was established that the stiffness matrix coefficients and inertia matrix coefficients are based on free 

vibration frequencies of the system. 
» This dynamic finite element model allows getting exact solutions for minimum number of finite elements 

of bar structures. 
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