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Abstract: In this work, variation iteration method is used to develop analytical solutions for the prediction of molar 
concentration of native and denatured jack bean urease (EC 3.5.1.5) through the three–reaction steps kinetic model 
of thermal inactivation of the urease. The obtained analytical solutions are used to study the kinetics of thermal 
inactivation of the enzyme as applied in biotechnology. The analytical solutions are verified with numerical solutions 
using Runge–Kutta with shooting method and good agreements are established between the solutions. The 
information given in this theoretical investigation will assist in the kinetic analysis of the experimental results over 
handling rate constants and molar concentrations. The analytical solutions as developed in this work can serve as a 
starting point for a better understanding of the relationship between the physical quantities of the problems. 
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1. INTRODUCTION 
Urease (urea amino hydrolase E.C.3.5.1.5) is an enzyme usd in biotechnology. It is a part of the superfamily of 
amidohydrolases and phosphotriesterases. It catalyzes the hydrolysis of urea to produce ammonia and 
carbamate.  The produced carbamate is subsequently degraded by spontaneous hydrolysis to produce another 
ammonia and carbonic acid [1]. Consequently, the pH of its environment increases as ammonia is produced. 
Ureases catalyzes at a rate approximately 1014 times faster than the rate of the non–catalyzed reaction [2]. As a 
nickel–containing metalloenzymes of high molecular weight [3], it can be found in numerous bacteria, fungi, 
algae, plants and some invertebrates, as well as in soils, as a soil enzyme.  
Jack bean urease, which is the most widely used plant urease, is a nickel containing oligomeric enzyme 
exhibiting a high degree of specifity to urea [4]. The importance and applications of the urease as a good 
catalyst for hydrolysis of urea has attracted several research interests [1–19] especially in biotechnology and 
biomedical engineering studies. Also, the thermostability of jack bean urease has often been a subject of 
investigation. However, there are few studies where the temporal loss of enzyme activity and the kinetic analysis 
of heat induced decay of enzyme activity were presented. Moreover, none of these studies involved consistent 
evaluation of kinetics of the urease inactivation. Most of the past studies described the complex mechanisms 
of thermal deactivation of enzymes as a “one step – two states” process where the native (active) form is 
transformed in the denaturated (inactive) form by a first order unimolecular irreversible reaction [18]. This 
unifying simplification is of interest for people focusing attention to phenomenological rather than mechanistic 
description of the kinetics of heat induced enzyme deactivation. However, the multi–temperature evaluation 
revealed that an adequate kinetic model had to incorporate at least three reaction steps [18]. Although, three–
step mechanism model of inactivation of the enzyme has been developed by Illeova et al. [18], there is no 
provision of analytical solutions (except by Ananthi et al. [19]) for the predictions of model concentrations of 
the native enzyme, denature enzyme and temperature for thermal inactivation of urease. Ananthi et al. [19] 
applied homotopy analysis method to develop approximate analytical solutions for the analysis of kinetic and 
thermal inactivation of the enzyme. Although, the homotopy analysis method is a reliable and efficient semi–
analytical technique, but it suffers from a number of limiting assumptions such as the requirements that the 
solution ought to conform to the so–called rule of solution expression and the rule of coefficient ergodicity. 
Also, the use of HAM in the analysis of linear and nonlinear equations requires the determination of auxiliary 
parameter which will increase the computational cost and time. Also, the lack of rigorous theories or proper 
guidance for choosing initial approximation, auxiliary linear operators, auxiliary functions, and auxiliary 
parameters limits the applications of HAM.  Moreover, such method requires high skill in mathematical analysis 
and the solution comes with large number of terms. 
The wide range of applications due to its flexibility and high accuracy have made VIM a promising approximate 
analytical method in nonlinear analysis of physical and real life problems. It is established that with few number 
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of iteration, even, in some cases, a single iteration, VIM can converge to correct solutions or results [20–27]. 
Therefore, in this work, variation parameter method is applied to the kinetics analysis of thermal inactivation of 
enzyme. The developed analytical solutions are used to study the effects of the models parameters on the molar 
concentration of the native and denatured enzyme. The analytical solutions as developed in this work can serve 
as a starting point for a better understanding of the relationship between the physical quantities of the 
problems as it provides continuous physical insights into the problem than pure numerical or computation 
methods. 
2. MODEL FORMULATION  
The three – step mechanism of inactivation with a dissociation reaction of the native form of the enzyme, N, 
into a denatured form, D, and with two parallel association reactions of the native and denatured forms into 
irreversible denatured enzymes forms I1 and I2, respectively. 
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where k+1,  k,  k2  and  k3 represent the rate constants of individual reactions. The material balances equations 
for N,  D and temperature are given as follows [28, 29]: 

' 2 ' 2
1 1 32N

N D D
dc k c k c k c
dt + −= − + −                           (2a)  

( )' ' 2
1 1 22 2D

N D
dc k c k k c
dt + −= − +                          (2b) 

( )B
dT K T T
dt

= −                                                                                 (2c) 

Initial conditions are 
  𝑡𝑡 = 0,   𝑐𝑐𝑁𝑁 = 1,   𝑐𝑐𝐷𝐷 = 0 , 𝑇𝑇 = 30 + 𝑇𝑇𝐵𝐵 ,                     (3) 

The kinetic model was formed by the set of nonlinear ordinary differential equations (eqs. (2a)–(2c)). The core 
of the kinetic model was formed by the material balances of the forms N and D (eqs. (2a) and (2b)). The third 
equation of the model was the enthalpy balance (Eq. (2c)) describing the initial heating period  
Let cN, cD,  k+1, k−1,   k2 and  k3  by X, Y, a, b, c and d, respectively, eq. 2a and 2b become   

2 22dX aX bY dX
dt

= − + −                           (4a)  

( ) 22 2dY aX b c Y
dt

= − +                          (4b) 

0, 1, 0t X Y= = =                           (5) 
while the exact solution of Eq. (2c) is given as 

( ) 30 Kt
BT t T e−= +

                                                                                     (6)
 

3. METHOD OF SOLUTION: VARIATIONAL ITERATION METHOD 
In finding direct and practical solutions to the problem, variational iteration method is applied to the 
simultaneous nonlinear equations. As pointed previously, the variational iteration method is an approximate 
analytical method for solving differential equations. The basic definitions of the method are as follows. 
The differential equation to be solved can be written in the form 

( )Lu Nu g t+ =                                                                                        (7) 
where L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous term in the differential 
equation. 
Following VIM procedure, we have a correction functional as  

{ }1
0

( ) ( ) ( ) ( ) ( )
t

n n nu t u t Lu Nu g t dλ τ τ τ+ = + + −∫ 

                                                  
(8) 

λ is a general Lagrange multiplier, the subscript n is the nth approximation and u  is a restricted variation 
0uδ =  

Applying the above VIM procedures to eqs. (4a) and (4b), the following iteration formulations are constructed,
  ( ) ( ) 2 2

1 0
( ) 0 , 2

t

n n n nX t X t aX bY dX dλ ξ ξ+  = + − + − ∫                                          (9a)   

( ) ( ) ( ) 2
1 0
( ) 0 , 2 2 ,     

t

n n nY t Y t aX b c Y dtλ ξ+  = + − + ∫                                        (9b) 
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where it was found that  ( ), 1λ η ξ =  
Therefore, eqs. (9a) and (9b) 

( ) 2 2
1 0
( ) 0 2

t

n n n nX t X aX bY dX dξ+  = + − + − ∫                                                 (10a)   

( ) ( ) 2
1 0
( ) 0 2 2 ,     

t

n n nY t Y aX b c Y dt+  = + − + ∫                                               (10b) 
From the initial condition 

0 01, 0X Y= =                                                                                 (11)
 Using the iterative scheme in eqs. (10a) and (10b), we have 

( )1 2X a d t= − +                                                                                (12a) 

1 2Y at=                                                                                        (12b) 
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Similarly X4, Y4, X5, Y5, X6, Y6, X7, Y7, X8, Y8, X9, Y9, X10, Y10... are determined using the iterative schemes in Eqs. (10). 
The solutions of Xn and Yn form the approximate analytical solutions of concentrations of native and denatured 
enzyme. The analytical solutions are simulated and the results are shown below. 

Table 1: Comparison of results 
The results of VIM and Numerical methods for X(t) 

for a = 1, b = 0.01, c = 0.001, d = 0.05 
X(t) 

X VIM NUM NM–VIM 
0.00 1.000000 1.000000 0.000000 
0.10 0.896320 0.896320 0.000000 
0.20 0.804239 0.804239 0.000000 
0.30 0.722362 0.722362 0.000000 
0.40 0.649479 0.649479 0.000000 
0.50 0.584542 0.584542 0.000000 
0.60 0.526637 0.526637 0.000000 
0.70 0.474965 0.474965 0.000000 
0.80 0.428834 0.428824 0.000000 
0.90 0.387599 0.387599 0.000000 
1.00 0.350878 0.350748 0.000000 

 

Table 2: Comparison of results 
The results of VIM and Numerical methods for X(t) 

for a = 1, b = 0.01, c = 0.001, d = 0.05 
Y(t) 

X VIM NUM NM–VIM 
0.00 0.000000 0.000000 0.000000 
0.10 0.189399 0.189399 0.000000 
0.20 0.359101 0.359101 0.000000 
0.30 0.511178 0.511178 0.000000 
0.40 0.647477 0.647477 0.000000 
0.50 0.769644 0.769644 0.000000 
0.60 0.879150 0.879150 0.000000 
0.70 0.977311 0.977311 0.000000 
0.80 1.065300 1.065300 0.000000 
0.90 1.144180 1.144170 0.000000 
1.00 1.214880 1.214840 0.000000 

 

4. RESULTS AND DISCUSSION 
Tables 1 and 2 show the comparison between the results of VIM and NM. The obtained results of concentrations 
using VIM as compared with the numerical procedure using Runge–Kutta method coupled with shooting 
method are in good agreements. The high accuracy of VIM gives high confidence about validity of the method 
in providing solutions to the problem.  
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Figure 1: Molar concentrations of native and denatured 

enzyme when𝑘𝑘−1 = 1, 𝑘𝑘+1 = 0.01, 𝑘𝑘2 = 0.001, 𝑘𝑘3 = 0.05 
Figure 2: Effects of dissociation native rate constant 
(𝑘𝑘−1) on molar concentration of denatured enzyme 

  
Figure 3: Effects of dissociation native rate constant (𝑘𝑘−1) 

on mmolar concentration of native enzyme 
when 𝑘𝑘+1 = 0.01,    𝑘𝑘2 = 0.001,    𝑘𝑘3 = 0.001 

Figure 4: Effects of dissociation native rate constant (𝑘𝑘+1) 
on molar concentration of native enzyme 

When   𝑘𝑘−1 = 0.88,    𝑘𝑘2 = 0.001,    𝑘𝑘3 = 0.00028 

  
Figure 5: Effects of dissociation native rate constant (𝑘𝑘−1) 

on molar concentration of denaturedenzyme 
when 𝑘𝑘+1 = 0.1,    𝑘𝑘2 = 0.00026,    𝑘𝑘3 = 0.001 

Figure 6: Effects of dissociation native rate constant (𝑘𝑘−1) 
on molar concentration of native enzyme 
when 𝑘𝑘−1 = 1,    𝑘𝑘2 = 0.1,    𝑘𝑘3 = 0.001 

 
Figure 7: Temperature variation with time of the enzyme when  𝑘𝑘−1 = 1,    𝑘𝑘2 = 0.1,    𝑘𝑘3 = 0.001 
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Figure 1 shows variation of the molar concentration of native and denatured enzyme with time when  k−1 =
1, k+1 = 0.01, k2 = 0.001, k3 = 0.05. As depicted in the figure, the molar concentration of native enzyme 
decreases as the time increases while the molar concentration of the denatured enzyme increases as the time 
increases. The time taken to reach the maximum value of the molar concentration of native enzyme is the same 
as the time taken to reach the minimum value of the molar concentration of the denature enzyme. The steady 
values of molar concentrations of native and denatured enzyme depend upon the rate constants. 
Figure 2 show the effects of dissociation native rate constant (k−1) on molar concentration of denatured 
enzyme while Figure 3 depict the effects of dissociation native rate constant (k−1) on molar concentration of 
native enzyme when k+1 = 0.01, k2 = 0.001, k3 = 0.001.  
From these figures, it is found that, the value of molar concentration of the denatured enzyme initially increases 
and reaches the steady state value when 𝑡𝑡≥5. Also, the molar concentration of the denatured enzyme increases 
when 𝑘𝑘 increases and the molar concentration becomes zero when 𝑘𝑘+1 ≤ 0.01s−1 . Figure 4 presents the effects 
of dissociation native rate constant (k+1) on molar concentration of native enzyme when   k−1 = 0.88, k2 =
0.001, k3 = 0.00028 while Figure 5 shows the effects of dissociation native rate constant (k−1) on molar 
concentration of denatured enzyme when k+1 = 0.1, k2 = 0.00026, k3 = 0.001.Effects of dissociation 
native rate constant (k−1) on molar concentration of native enzyme when k−1 = 1, k2 = 0.1, k3 = 0.001 are 
shown in Figure 6.  
Figure 7 show the temperature history of the enzyme when k−1 = 1, k2 = 0.1, k3 = 0.001. Also, effects of 
bath temperature on the temperature history are depicted in the figure. The temperature of the enzyme 
decreases linearly with time. It could be seen that as the bath temperature, 𝑇𝑇𝐵𝐵 increases, the temperature of the 
enzyme increase. 
4. CONCLUSION 
In this work, approximate analytical solutions for the analysis of kinetic model of thermal inactivation of the jack 
bean urease (E.C.3.5.1.5) have been developed using variation iteration method. The analytical solutions are 
verified with numerical solution using Runge–Kutta with shooting method and good agreements are 
established. The information given in this theoretical investigation will assist in the kinetic analysis of the 
experimental results over handling rate constants and molar concentrations. The analytical solutions as 
developed in this work can serve as a starting point for a better understanding of the relationship between the 
physical quantities of the problems as it provides continuous physical insights into the problem than pure 
numerical or computation methods. 
Nomenclature 

cN: Molar concentration of the native enzyme form (mole/cm) 
cD: Molar concentration of the denaturedenzyme form (mole/cm 
k–1,k+1,k2,k3: Rate constants of individual reaction (s–1) 
k’–1, k’2, k’3: Modified rate constants (s−1) 

𝐾𝐾:  Coefficient in the enthalpy balance (s) 
𝑇𝑇B: Bath temperature (K) 
𝑇𝑇: Temperature (K) 
𝑡𝑡: Time 
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