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Abstract: Optimal power flow (OPF) is a critical control task for reliable and efficient operation of power grids. OPF 
studies to minimize both the power distribution losses and the cost of power drawn from the substation, without 
affecting on the voltage regulation. This paper discusses the Newton Raphson method that’s can uses with OPF 
control for the stability of the power systems. This method has a faster solution for load flow analysis with the 
optimized techno-economical and saving the stable system. The Newton Raphson method is requiring an initial 
condition and work well for heavily load system when compared to another method. The expected results for load 
flow are voltage magnitude, phase angle, real and reactive power. This paper simulates the Newton Raphson method 
for an optimal load flow analysis with IEEE-5 buses. 
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1. INTRODUCTION 
At the end of 19Th century the electric power started by low generation voltage level for closed areas. With the 
increasing on the demand power, the electrical grid extended and classified to generation, transmission and 
distribution. This extension required to increase the transmission voltage, that’s reached now to 1200kV. So, the 
electric networks became more complex, that’s may cause many problems in power flow control [1-2]. 
Regarding this increasing, it’s important to apply optimum plans for the power system to reach to minimum 
cost and without affecting the voltage in the system. The advanced development of power grid system for 
future will give immediate impacts of anew connection such as power flow direction, protection, voltage 
profile, power quality and stability [2-4]. The purpose of power flow studies is to plan ahead and account for 
various hypothetical situations. For example, if a transmission line is being taken off- line for maintenance, can 
the remaining lines in the system handle the required loads without exceeding their rated values. Smart Grid 
considered as future electrical power generation, uses calculation tools methods on flow of electricity and 
information to create a widely distributed automated energy delivery network. This concept is being widely 
accepted in power system today and now it presents some big challenges in integrating generation with 
additional of a communication network in more efficiently [4]. Optimal reactive power dispatch problem as a 
sub-problem of the OPF is a very important optimization problem in power systems as proper management of 
reactive power injection into the system can minimize real power loss and voltage profile deviations and 
improve voltage stability [2-6]. The algorithm for the power flow calculation based on the Newton's method in 
optimization allows to find a solution for the situation when initial data are outside the existence domain and 
to pull the operation point onto the feasibility boundary by an optimal path. Also, it is possible to estimate a 
static stability margin by utilizing Newton's method in optimization. 
2. ACTIVE AND REACTIVE POWER CALCULATIONS 
The formulation of the active and reactive power entering a bus, it’s need to define the following quantities [5-
8]. By assuming the voltage at the ith bus be denoted by 

( )iiiiii sinjcosVVV δ+δ=δ∠=               (1) 

Also let us define the self-admittance at bus-i as 
( ) iiiiiiiiiiiiiiii jBGsinjcosYYY +=θ+θ=θ∠=                      (2) 

Similarly, the mutual admittance between the buses i and j can be written as 
( ) ijijijijijijijij jBGsinjcosYYY +=θ+θ=θ∠=                                   (3) 

Also, assuming the power system contains a total number of n buses. So, the current injected at bus-i is given 
as 

∑
=

=+++=
n

1k
kiknin22i11ii VYVYVYVYI                  (4) 

Also, assume the current entering a bus to be positive and that leaving the bus to be negative. As a 
consequence, the power and reactive power entering a bus will also be assumed to be positive. The complex 
power at bus-i is then given by 
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Note that 
( )( )( ) ( ) ( ) ( )[ ]

( ) ( )ikikikik

kikkikiikkikikii

sinjcos
sinjcossinjcossinjcossinjcossinjcos

δ−δ+θ+δ−δ+θ=
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Therefore, substituting in (5) we get the real and reactive power as 

( )∑
=

δ−δ+θ=
n

1k
ikikkiiki cosVVYP                       (6) 

( )∑
=

δ−δ+θ−=
n

1k
ikikkiiki sinVVYQ           (7) 

3. DATA FOR LOAD FLOW 
The active and reactive power generated at bus-i be denoted by PGi and QGi respectively, also, the real and 
reactive power consumed at the ith bus by PLi and QLi respectively [4-9]. Then the net real power injected in 
bus-i is 

LiGiinj,i PPP −=                    (8) 

By assume the injected power calculated by the load flow program be Pi,calc. Then the mismatch between the 
actual injected and calculated values is given by 

calc,iLiGicalc,iinj,ii PPPPPP −−=−=∆       (9) 

In a similar way the mismatch between the reactive power injected and calculated values is given by 

calc,iLiGicalc,iinj,ii QQQQQQ −−=−=∆                                       (10) 

The purpose of the load flow is to minimize the above 
two mismatches. It is to be noted that equation (6) 
and equation (7) are used for the calculation of real 
and reactive power in equation (9) and equation (10). 
However, since the magnitudes of all the voltages 
and their angles are not known a priori, an iterative 
procedure must be used to estimate the bus voltages 
and their angles in order to calculate the mismatches. 
It is expected that mismatches ∆Pi and ∆Qi reduce 
with each iteration and the load flow is said to have 
converged when the mismatches of all the buses 
become less than a very small number. [8-11] 
For the load flow studies, by consider the system of figure (1), 
which has 2 generators and 3 load buses. We define bus-1 as the 
slack bus while taking bus-5 as the P-V bus. Buses 2, 3 and 4 are P-
Q buses. The line impedances and the line charging admittances 
are given in table (1). Based on this data the Ybus matrix is given 
in table (2). This matrix is to be noted here that the sources and 
their internal impedances are not considered while forming the 
Ybus matrix for load flow studies which deal only with the bus 
voltages. 

Table (2) Ybus matrix of the system of fig. 1 
 1 2 3 4 5 

1 2.6923 − j13.4115 − 1.9231 + j9.6154 0 0 − 0.7692 + j3.8462 
2 − 1.9231 + j9.6154 3.6538 − j18.1942 − 0.9615 + j4.8077 0 − 0.7692 + j3.8462 
3 0 − 0.9615 + j4.8077 2.2115 − j11.0027 − 0.7692 + j3.8462 − 0.4808 + j2.4038 
4 0 0 − 0.7692 + j3.8462 1.1538 − j5.6742 − 0.3846 + j1.9231 
5 − 0.7692 + j3.8462 − 0.7692 + j3.8462 − 0.4808 + j2.4038 − 0.3846 + j1.9231 2.4038 − j11.8942 

The bus voltage magnitudes, their angles, the power generated and consumed at each bus are given in table 
(3). In this table, some of the voltages and their angles are given in boldface letters. This indicates that these are 
initial data used for starting the load flow program. The power and reactive power generated at the slack bus 

 
Figure 1. The simple power system used for load flow studies 

Table (1). Line impedance and line charging 
data of the system of figure (1) 

Line (bus 
to bus) Impedance Line charging 

(Y/2) 
1-2 0.02 + j0.10 j0.030 
1-5 0.05 + j0.25 j0.020 
2-3 0.04 + j0.20 j0.025 
2-5 0.05 + j0.25 j0.020 
3-4 0.05 + j0.25 j0.020 
3-5 0.08 + j0.40 j0.010 
4-5 0.10 + j0.50 j0.075 
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and the reactive power generated at the P-V bus are unknown. Therefore, each of these quantities are indicated 
by a dash (−). Since we do not need these quantities for our load flow calculations, their initial estimates are not 
required. Also note from figure (1) that the slack bus does not contain any load while the P-V bus 5 has a local 
load and this is indicated in the load column. 

Table (3) Bus voltages, power generated and load – initial data. 

Bus no. Bus voltage Power generated Load 
Magnitude (pu) Angle (deg) P (MW) Q (MVAr) P (MW) P (MVAr) 

1 1.05 0 − − 0 0 
2 1 0 0 0 96 62 
3 1 0 0 0 35 14 
4 1 0 0 0 16 8 
5 1.02 0 48 − 24 11 

4. OVERVIEW ABOUT NEWTON-RAPHSON METHOD 
This part discusses the solution of a set of nonlinear equations through Newton-Raphson method. by 
consideration that the setting of n nonlinear equations of a total number of n variables x1, x2, …, xn. Let these 
equations be given by  

( )
( )

( ) nn1n

2n12

1n11

x,,xf

x,,xf
x,,xf

η=

η=
η=









             (11) 

where f1, …, fn are functions of the variables x1, x2, …, xn. By define another set of functions g1, …, gn, as given 
below 

( ) ( )
( ) ( )

( ) ( ) 0x,,xfx,,xg
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            (12) 

And by assume that the initial estimates of the n variables are x1(0), x2(0), …, xn(0). By add corrections ∆x1(0), 
∆x2(0), …, ∆xn(0) to these variables such that result is the correct solution of these variables defined by 

( ) ( )
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The functions in (12) then can be written in terms of the variables given in (13) as 
( ) ( ) ( ) ( ) ( )( ) n,,1k,xx,,xxgx,,xg 0

n
0

n
0

1
0

1kn1k  =∆+∆+=∗∗              (14) 
We can then expand the above equation in Taylor’s series around the nominal values of x1(0), x2(0), …, xn(0). 
Neglecting the second and higher order terms of the series, the expansion of gk, k = 1, …, n is given as 

( ) ( ) ( )( ) ( )
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∆+=∗∗                 (15) 

where ( )0
ik xg ∂∂  is the partial derivative of gk evaluated at x2(0), …, xn(0). 

Equation (15) can be written in vector-matrix form as 
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The square matrix of partial derivatives is called the Jacobian matrix J with J(0) indicating that the matrix is 
evaluated for the initial values of x2(0), …, xn(0). the solution of (16) can be write as 
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Since the Taylor’s series is truncated by neglecting the 2nd and higher order terms, we cannot expect to find 
the correct solution at the end of first iteration. We shall then have 

( ) ( ) ( )
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These are then used to find J(1) and ∆gk(1), k = 1, …, n. We can then find ∆x2(1), …, ∆xn(1) from an equation 
like (17) and subsequently calculate x2(1), …, xn(1). The process continues till ∆gk, k = 1, …, n becomes less 
than a small quantity. 
5. SIMULATION OF POWER FLOW BY NEWTON RAPHSON METHOD  
Let us assume that an n-bus power system contains a total number of np P-Q buses while the number of P-V 
(generator) buses be ng such that n = np + ng + 1. Bus-1 is assumed to be the slack bus. We shall further use 
the mismatch equations of ∆Pi and ∆Qi given in (9) and (10) respectively [9-12]. The approach to Newton-
Raphson load flow is similar to that of solving a system of nonlinear equations using the Newton-Raphson 
method: at each iteration, we have to form a Jacobian matrix and solve for the corrections from an equation of 
the type given in (16). For the load flow problem, this equation is of the form 
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where the Jacobian matrix is divided into submatrices as 



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It can be seen that the size of the Jacobian matrix is (n + np − 1) × (n + np − 1). For example, for the 5-bus 
problem of figure (1) this matrix will be of the size (7 × 7). The dimensions of the submatrices are as follows: 
J11: (n − 1) × (n − 1), J12: (n − 1) × np, J21: np × (n − 1) and J22: np × np 
The submatrices are 
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— Load Flow Algorithm 
The Newton-Raphson procedure is as follows: 
Step-1: Choose the initial values of the voltage magnitudes |V|(0) of all np load buses and n − 1 angles δ(0) of 
the voltages of all the buses except the slack bus. 
Step-2: Use the estimated |V|(0) and δ(0) to calculate a total n − 1 number of injected real power Pcalc(0) and 
equal number of real power mismatch ∆P(0). 
Step-3: Use the estimated |V|(0) and δ(0) to calculate a total np number of injected reactive power Qcalc(0) and 
equal number of reactive power mismatch ∆Q(0). 
Step-3: Use the estimated |V|(0) and δ(0) to formulate the Jacobian matrix J(0). 
Step-4: Solve (19) for ∆δ(0) and ∆|V|(0)÷|V|(0). 
Step-5: Obtain the updates from 

( ) ( ) ( )001 δ∆+δ=δ                          (25) 
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Step-6: Check if all the mismatches are below a small number. Terminate the process if yes. Otherwise go back 
to step-1 to start the next iteration with the updates given by (25) and (26). 
— Formation of the Jacobian Matrix 
Formation of the submatrices of the Jacobian matrix cab be simulate by use the active and reactive power 
equations of (6) and (7) can be rewrite them with the help of (2) as 
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A. Formation of J11 
By define J11 as 
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From (21) that Mik’s are the partial derivatives of Pi with respect to δk. The derivative Pi (27) with respect to k for 
i ≠ k is given by 

( ) ki,sinVVYPL ikikkiik
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Also, the derivative Pi with respect to k for i = k is given by 
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Comparing the above equation with (28) we can write 
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B. Formation of J21 
Let us define J21 as 
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From (23) it is evident that the elements of J21 are the partial derivative of Q with respect to δ. From (28) we 
can write equation (33) 

( ) ki,cosVVYQM ikikkiik
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Similarly, for i = k we have 
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The last equality of (34) is evident from (27). 
C. Formation of J12 
By define J12 as 
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As evident from (22), the elements of J21 involve the derivatives of real power P with respect to magnitude of 
bus voltage |V|. For i ≠ k, we can write from (27) 
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For i = k we have 
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D. Formation of J22 
For the formation of J22 let us define 
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For i ≠ k can write from (4.39) 
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Finally, for i = k we have 
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∂

=

∑

∑

≠
=

≠
=                       (40) 

So, the submatrices J11 and J21 are computed, the formation of the submatrices J12 and J22 is fairly 
straightforward. For large system, this will result in considerable saving in the computation time. 
6. SOLUTION OF NEWTON-RAPHSON LOAD FLOW 
The Newton-Raphson load flow program is tested on the system of figure (1) with the system data and initial 
conditions given in tables (1) to (3) [11-14]. From (30) can write 

( ) ( ) ( ) ( ) 8077.4BsinYsinVVYL 2323232323
0

3
0

223
0

23 −=−=θ−=δ−δ+θ−=  

Similarly, from (28) we have 
( ) ( ) ( ) ( ) ( )

6327.0B02.1BBB05.1B

sinVVYBVQ

2524232122

n

2k
1k

2kk2
0

k
0

2k222

20
2

0
2

−=−−−−−=

δ−δ+θ−−= ∑
≠
=  

Hence from (31)  
( ) ( ) ( ) 8269.18B6327.0BVQL 2222

20
2

0
2

0
22 =−−=−−=  

In a similar way, the rest of the components of the matrix J11(0) are calculated. This matrix is given by 
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( )



















−−−
−−
−−−
−−

=

4558.129615.14519.29231.3
9615.18077.58462.30
4519.28462.31058.118077.4
9231.308077.48269.18

J 0
11

 

For forming the off diagonal elements of J21 we note from (33) that 
( ) ( ) ( ) ( ) 0.9615GcosVVYM 233223

0
3

0
223

0
23 =−=δ−δ+θ−=  

Also from (27) the real power injected at bus-2 is calculated as 
( ) ( ) ( ) ( ) ( ) 1115.0G02.1GGG05.1GcosVVYGVP 2524232122

n

2k
1k

2kk2
0

k
0

2k222

20
2

0
2 −=++++=δ−δ+θ+= ∑

≠
=

 

Hence from (34) we have 
( ) ( ) 7654.3GVPM 22

20
2

0
222 −=−=  

Similarly, the rest of the elements of the matrix J21 are calculated. This matrix is then given as 

( )

















−
−

−
=

3923.01615.17692.00
4904.07692.02212.29615.0
7846.009615.07654.3

J 0
21

 

For calculating the off diagonal elements of the matrix J12 we note from (36) that they are negative of the off 
diagonal elements of J21. However, the size of J21 is (3 × 4) while the size of J12 is (4×3). Therefore to avoid this 
discrepancy we first compute a matrix M that is given by 



















=

44434241

34333231

24232221

14131211

MMMM
MMMM
MMMM
MMMM

M
 

he elements of the above matrix are computed in accordance with (33) and (34). can define 
( ) ( )3:1,4:1MJ  and  4:1,3:1MJ 1221 −==  

Furthermore, the diagonal elements of J12 are overwritten in accordance with (37). This matrix is then given by 

( )



















−−
−

−−
−

=

3923.04904.07846.0
1462.17692.00
7692.02019.29615.0
09615.05423.3

J 0
12

 

Finally, it can be noticed from (39) that J22 = J11(1:3, 1:3). However, the diagonal elements of J22 are then 
overwritten in accordance with (40). This gives the following matrix 

( )

















−
−−

−
=

5408.58462.30
8462.38996.108077.4
08077.45615.17

J 0
22

 

From the initial conditions the power and reactive power are computed as 
( ) [ ]
( ) [ ]T0

calc

T0
calc

1335.01031.06327.0Q

0098.00077.00096.01115.0P

−−−=

−−−−=  

Consequently, the mismatches are found to be 
( ) [ ]
( ) [ ]T0

T0

0535.00369.00127.0Q

2302.01523.03404.08485.0P

−=∆

−−−=∆  

Then the updates at the end of the first iteration are given as 
( )

( )

( )

( )

( )

( )

( ) 














=





































−
−
−
−

=





















δ
δ
δ
δ

9913.0
9817.0
9864.0

V
V
V

   deg 

09.3
19.7
95.6
91.4

0
4

0
3

0
2

0
4

0
3

0
3

0
2

 

The load flow converges in 7 iterations when all the power and reactive power mismatches are below 10−6. 
7. CONCLUSIONS 
Today’s electric grid was designed to operate as a vertical structure consisting of generation, transmission and 
distribution and advanced control support devices for reliability, stability and efficiency. Newton Raphson 
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method can be uses to solve the power flow problems to save the stability system with the increasing on the 
electric network. Newton Raphson method calculation steps by minimizing the square sum of discrepancies of 
nodal capacities. During the power flow calculation, the determinant of matrix is positive around zero and 
negative value of the Jacobian matrix determinant. The main properties of Newton Raphson method are easy 
to handle P-V bus difficulties. The Newton’s method in optimization for power flow calculation the method 
computational costs on each iteration will be several times greater. Each row of Jacobian matrix corresponding 
to any bus contains nonzero elements corresponding to all incident buses of the scheme.  
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