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Abstract: This article discusses a new geometric method for the parameterization of the ellipse based on the 
Dandelin theorem and the Valencia sphere, with the corresponding interpretation of the conic sections. This method 
for the determination of the ellipse’s parameters, without to use a Cartesian coordinate system, applies basic 
trigonometric identities and right triangles. The concepts based on the Valencia’s sphere can be implemented into 
robust mathematical models as a new pedagogical resource, in the subjects related to the study and analysis of the 
ellipses. 
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1. INTRODUCTION 
The conic sections are the non-degenerate curves generated by the intersections of a plane with one or two 
nappes of a cone. The conic sections have been studied by the ancient Greek mathematicians with this work 
culminating around 300 B.C., when Apollonius of Perga undertook a systematic study of their properties 
entitled On Conics. The three types of conic section are the hyperbola, the parabola, and the ellipse. The circle 
is a special case of the ellipse and it was sometimes called a fourth type of conic section. For a plane that is not 
perpendicular to the axis and that intersects only a single nappe, the curve produced is either an ellipse or a 
parabola. The curve produced by a plane intersecting both nappes is a hyperbola. The ellipse and hyperbola 
are known as central conics. There are many applications of conic sections in both pure and applied 
mathematics [1-3]. 
In geometry, the Dandelin spheres were discovered in 1822 by the Belgian mathematician Germinal Pierre 
Dandelin (1794 - 1847). The Dandelin spheres are one or two spheres that are tangent both to a plane and to 
a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at 
which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also 
sometimes called focal spheres [3]. 
Pierce Morton (1803 - 1859) was an Irish mathematician who published a new proof of the focus-directrix 
property of conic sections using Dandelin spheres in the first volume of the Cambridge Philosophical 
Transactions (1829) [3]. The focus-directrix property is essential to proving that astronomical objects move along 
conic sections around the Sun [4]. 
A right cone can be generated by moving a line (the generatrix) fixed at the future apex of the cone along a 
closed curve (the directrix); if that directrix is a circle perpendicular to the line connecting its center to the apex, 
the motion is rotation around a fixed axis and the resulting shape is a circular cone [2]. 
If we take the intersection of a plane with a cone, the section so obtained is called a conic section [2, 5-7]. Thus, 
conic sections are the curves obtained by intersecting a right circular cone by a plane. We obtain different kinds 
of conic sections depending on the position of the intersecting plane with respect to the cone and the angle 
made by it with the vertical axis of the cone [8]. 
Let’s consider the cutting plane angle α between the cutting plane and the horizontal plane, the conicity angle 
Ɵ, and β is the angle between the vertical axis and the generatrix (fig. 1). The intersection of the plane with the 
cone can take place either at the vertex of the cone or at any other part of the nappe either below or above the 
vertex. When the plane cuts the nappe (other than the vertex) of the cone, we have the following situations: 
a) when α = 0º, the section is a circle. 
b) when 0º < α < Ɵ, the section is an ellipse. 
c) when α = Ɵ; the section is a parabola. (In each of the above three cases, the plane cuts entirely across one 

nappe of the cone). 
d) when Ɵ < α ≤ 90; the plane cuts through both the nappes and the curves of intersection is a hyperbola. 
Various parameters are associated with a conic section. Major and minor axes of conics are the axes of symmetry 
for the figure 1. 
The eccentricity is measured as the ratio of the distance between the two focal points and the major axis, ε = 
c/a. The eccentricity is a measure for how circle-like an ellipse is. An ellipse with an eccentricity of ε = 0 is just a 
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circle. For 0 < ε < 1 we obtain an ellipse, 
for ε = 1 a parabola, and for ε > 1 a 
hyperbola. Inbetween there’s a 
continuum of possible shapes [3]. 
According to the study carried out by 
Dandelin and Quetelet [9], it was 
established that "Any sphere tangent to 
the interior of the right cone and to the 
secant plane determines the focus of the 
conic section", in addition, "The circle of 
tangency common to the sphere and the 
right cone belongs to the plane that is perpendicular to the same axis; in other words the plane will intersect the secant 
plane in the directrix of the conic (D1 or D2); The obtained directrices will be perpendicular to the major axis of the 
ellipse, and parallel to the minor axis of the ellipse. " 
According to figure 2, the centers of the Dandelin spheres always belong to the axis of the right cone; and the 
shortest or perpendicular distance that starts from the center of each sphere until it intersects the cutting plane 
α, determines the exact position of the focus of the conic (F1 and F2) [10]. 

 
Figure 2. The components of an ellipse with the Dandelin spheres and the focus-directrix property 

2. THE PROPOSED METHODOLOGY 
The main objective is to determine the parameters of the ellipse, without to use a Cartesian coordinate system, 
based on the Valencia’s sphere. 
The intersection of a secant plane with a right circular cone with an angle of inclination, less than the conicity 
angle (α < Ɵ), generates an ellipse. The right circular cone has the height H. Let’s note the point L (at the height 
h) where the secant plane intersects the vertical axis. This notation is not valid in the case of the hyperbola, 
when the angle α = 90º, since the secant plane is parallel to the axis of the right circular cone, and therefore, 
the point L can’t be located. 
Let’s introduce the angle γ between the secant plane and the axis of the right circular cone. Applying the 
formula ε = (cos γ)/(cos β), it can be seen the particular values of ε for every conic section, according to the 
cutting plane angle α, as shown in figure 3, [3]. 

 
Figure 3. The main parameters used in geometrical constructions of conic sections 

The main idea is to establish the radius of the Dandelin sphere as if it were an opposite cathetus; this being 
orthogonal to the secant plane, has its adjacent cathetus as the distance from a point P of the conic to the focus. 
"The right triangle contained in Dandelin's sphere can be rotated on its opposite cathetus or focal radius, to construct 
the conic section1; in the case of the ellipse, the rotation is complete, defining a cone of variable revolution; while in the 

 
Figure 1. Conic sections  
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cases of parabola and hyperbola, the rotation is restricted because these are open curves that tend towards infinity". 
(1 Geometric constructions proposed by authors). 
According to the previous geometric construction described, the values of the opposite and adjacent angles, 
as well as the lengths of the adjacent cathetus and the hypotenuse vary, when the rotation of the right triangle 
over its constant focal radius (Rf) is performed.  
When the adjacent cathetus coincides with the 
major axis of the conic, the angle at the vertex P, may 
have the maximum or minimum allowed value, 
depending on whether the point P is located exactly 
at the point V1 or V2; therefore, this is the essential 
start point to establish the formulas for the 
determination of the conic’s components, as shown 
in figure 4. 
In figure 5, in the front view, there are shown the 
following geometrical elements: the cutting plane α 
displayed as an edge; the major axis of the conic; the 
right triangles contained in the Dandelin spheres; 
the tangential edges; and the axis of the right 
circular cone (parallel to the frontal plane), and 
consequently, their true lengths in projection [2]; 
thus, the frontal view resembles a drawing with 
characteristics of Euclidean geometry.  
Let’s apply the property of the external angle to a triangle for the "secant line", which traverses the two 
generatrices of the right circular cone [3]. The external angle located above the secant line is equal to the sum 
of the two internal angles not adjacent (angle = 
γ + β), and the external angle located below the 
secant line, is equal to the difference of the non-
adjacent internal angles (angle = γ - β). Finally, 
the angles are specified supplementary and 
opposed by the vertex, as shown in figure 5. 
The bisectrices of the external angles are drawn 
by points V1 and V2, and intercept the axis of the 
right circular cone in the points R1 and R2, which 
coincide exactly with the centers of the 
Dandelin spheres. The perpendiculars drawn 
from R1 and R2 towards the secant plane α will 
determine the foci of the conic, complying with 
Dandelin's theorem [3], and will be called the 
focal radii: R1F1 and R2F2. The angles opposite the 
focal radii are adjacent and complementary angles to each other, as shown in figure 5. 
The AutoCAD software allows users to model, analyze and design complex 2D and 3D structures with high 
precision [10-12]. 
All the geometrical aspects previously described, will be used to determine the ellipse’s parameters in three-
dimensional (3D) space, without to use a Cartesian coordinate system. 
3. THE STUDY OF ELLIPSES 
— The conical ellipse 
An ellipse is a curve in a plane surrounding two focal points such that the sum of the distances to the two focal 
points is constant for every point on the curve [2, 3]. 
In descriptive geometry, it is necessary to construct an auxiliary projection plane adjacent to the elevation view, 
which is parallel to the secant plane α, to obtain the true size of the ellipse’s projection; the focal radii will be 
parallel to the direction of the visual rays, and consequently, they will be projected as a point in F1R1 and R2F2; in 
this way, the dihedral projection of an ellipse resembles the points of view described by the mathematicians 
Dandelin and Quetelet, with the study of the Dandelin spheres in 1822 [10], (as shown in figure 6). 
Let’s consider a right circular cone, with height H = 130 and conicity angle Ɵ = 66º, which is crossed by a secant 
plane with an inclination angle α = 36º. The intersection between the secant plane with the vertical axis 

 
Figure 4. Right triangles orthogonal to the ellipse’s plane 

 
Figure 5. The front view of the right circular cone with its real and 

supplementary angles, and bisectrices 
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determines a point L located at a height h = 75. Let’s determine the parameters of the conic section resulted by 
the intersection of the secant plane with the right circular cone. 
Since the angle of the secant plane is smaller 
than the conicity angle (α < Ɵ), it is obtained an 
ellipse. In front view is determined the length of 
the major axis of the ellipse (V1V2 = 2a), as 
shown in figure 7. 
We proceed to find the angles complementary 
to the conicity angles Ɵ and the secant plane α: 
≡ angle between the generatrix and cone axis: 

β = 90º - Ɵ, that is β = 90º - 66º. So, β = 24º. 
≡ angle between the axis of the cone and the 

secant plane: γ = 90º - α, that is α = 90º - 36º. 
So, γ = 54º. 

≡ then are determined, the values of the 
external angles whose vertices coincide 
with V1 and V2. 

≡ external angle above the secant plane: γ + β 
= 54º + 24º. So, γ + β = 78º. 

≡ external angle below the secant plane: γ - β 
= 54º - 24º. So, γ - β = 30º. 

≡ the difference of elevation h' = H - h, that is 
h' = 130 - 75. So, h' = 55. 

According to the values found above, we 
proceed to determine the length of the major 
axis of the ellipse (2a). For this it is necessary to 
use the the law of sines [1, 4]. 
» Determination of the length of the major 

axis of the ellipse, V1V2 
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By replacing the numerical values, there are 
obtained next values: 

V1L = 22.87028583 and V2L = 44.7410304. 
The major axis of the ellipse 2a = V1V2 = V1L + V2L. 
By replacing the numerical values, it is obtained: 2a = 67.61131623. So, a = 33.80565811. 
If the right circular cone is intersected by several secant planes parallel to each other, all the ellipses obtained 
will be similar, and therefore, would have the same eccentricity. 
» The geometrical construction of the Valencia’s sphere, which contains the ellipse 
Definition proposed by authors: The surface of the Valencia’s sphere, always passes through the two vertices of the 
ellipse and the two centers of the Dandelin spheres, thus defining a remarkable quadrilateral of Ptolemy [3]. Also, the 
centers of the Dandelin spheres are located exactly in each pole of the Valencia’s sphere, and the vertices of the 
major axis of the ellipse define a chord, which are located with latitudes equal to the sum and difference of the 
angles of the secant plane and the angle between the generatrix and the axis of the right circular cone (α ± β). 
The Valencia’s sphere represents a very simple and precise geometric method, useful to determine the 
parameters of the ellipse, starting from a known length of the major axis of the ellipse, and the angles of conicity 
and the secant plane, as shown in figure 8. 
This geometric object complies with the following theorem:  

 
Figure 6. Projection of an ellipse in descriptive geometry and its 

components 

 
Figure 7. Geometrical constructions for a right circular cone  

with an elliptical section 
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The theorem of the sphere of 
Valencia: “The radius of the sphere of 
Valencia (Rva) is equal to the 
quotient that results from the length 
of the semi-major axis of the ellipse, 
and the cosine of the angle β 
between the generatrix and the axis 
of the right circular cone. The 
geometric center of the sphere of 
Valencia, is located below the secant 
plane, and the mediatrix of the major 
axis of the ellipse, is a distance equals 
with the product of the semi-major 
axis of the ellipse, and the tangent of 
the angle formed by the generatrix 
and the axis of the right circular cone 
(β), which determines the center O of 
the ellipse.” 
» Determination of the radius of the Valencia’s sphere 
The radius of the Valencia sphere RVa can be computed knowing the length of the semi-major axis of the ellipse, 
and the angle β between the generatrix and the vertical axis of the right circular cone, as: 

β
=

cos
OVRVa 1                                                                          (3) 

By replacing the numerical values, it is obtained: RVa = 37.0049. 
» Determination of the mediatrix of the ellipse, from the center of the Valencia’s sphere 
The geometric center R of the Valencia’s sphere is situated on the vertical axis of the right circular cone, and is 
the midpoint between the two centers of the Dandelin spheres. The perpendicular RO on the major axis of the 
ellipse drawn from the center of the sphere of Valencia, is expressed as: 

β⋅= tanOVRO 1                                              (4) 
By replacing the numerical values, it is obtained: RO = 15.05124887. 
The distance RO, can also be computed by applying the power of a circle with respect to the point [3], that is, 
the power of point O, with respect to the radius of Valencia’s sphere. 

2
1

2 )OV()RVa(RO −=                                                     (5) 
By replacing the numerical values, it is obtained: RO = 15.05124887. 
» Determination of the focal semi-distance of the ellipse  
The extension of the focal radius R1F1 determines a chord R1Va. The mediatrix of this chord (RN), drawn from the 
center of the sphere of Valencia, is equal to the length of the focal semi-distance of the ellipse c: 

α⋅= sinRVaRN                                                                (6) 
By replacing the numerical values, it is obtained: RN = 
21.750934. 
» Determination of the minor semi-axis of the ellipse 
The semi-minor axis (b) of an ellipse (OB), being 
perpendicular to the focal semi-distance c (OF1) its length 
can be computed using the Pythagorean theorem [3].  
The hypotenuse defined between these two cathetuses is 
equal to the length of the semi-major axis of the ellipse 
(V1O = V2O = F1B = F2B), as shown in figure 9. 

2
1

2
1 )OF()OV(OB −=              (7) 

By replacing the numerical values, it is obtained: OB = 
25.878936672. 

 
Figure 8. The sphere of Valencia 

 
Figure 9.  The numerical values of the computed ellipse 
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» Determination of the eccentricity and directrices of the ellipse 
If a point P of the ellipse is situated on the major axis, exactly at the vertex farthest from the directrix (D1), the 
maximum radius vector is obtained, equivalent to the sum of the focal axis with the focus-vertex distance.  
If the eccentricity of the ellipse is the quotient between the focal semi-distance (c) and the semi-major axis (a), 
the following equation is obtained by equalization. 

a
c

=ε , or  
1

1

1 OV
OF

OV
RN

==ε                                                         (8) 

By replacing the numerical values, it is obtained: ε = 0.64341105. 
If the point P is located in the vertex V2, by equalization it is obtained: 

a
c

da2
ca
=

+
+

=ε                                                                           (9) 

The following relation is obtained by calculation: 

c
acad

2 −
=                                                                                 (10) 

By replacing the numerical values, it is obtained: d = 18.73564842. 
» The notable quadrilateral of Ptolemy 
The vertices of the ellipse and the centers of the Dandelin spheres determine a remarkable quadrilateral of 
Ptolemy, inscribed in the sphere of Valencia. The diagonals of the specified quadrilateral are: the major axis of 
the ellipse, and the diameter of the sphere comprised between the centers of the Dandelin spheres,  
In this way, two right triangles R1V1R2 and R1V2R2 are defined, which share the same hypotenuse equivalent to 
the diameter of the sphere of Valencia, and that always passes through the polar axis of specified sphere. It can 
be noted that this polar diameter is collinear to the axis of the right circular cone; and consequently, this 
direction is fixed, but, its diameter is variable depending on the angular value of the secant plane. 
Its importance lies in the fact that the internal angles of the vertices of the major axis of the ellipse are always 
right angles, since they comply with the second theorem of Thales [3]; by extending each pair of opposite sides, 
they coincide at a point that will always be located in the polarity director plane3, analogous to Monje's polar 
reciprocal theorem [3]. 
The polarity director plane is a plane perpendicular to the axis of revolution, passing through the apex of the 
right cone (acronym: PDP), according to the authors. 
The angles of convergence are equal to the angle β between the generatrix and the axis of the right circular 
cone; in this way, the two points of convergence X, Y, define a straight line that always passes through the vertex 
U of the right circular cone, and is coplanar to the polarity director plane PDP, as shown in figure 10. 
According to the aspects described above, the vertices of the ellipse are located by means of latitudes equal to 
the sum and difference of the angles of the 
secant plane, and the angle between the 
generatrix and the axis of the right cone (α 
± β). The prolongation of the bisector RO of 
the major axis of the ellipse, from the center 
of the Valencia’s sphere, intersects the XY 
line in point W. According to the polar 
reciprocal theorem, the point W is in the 
polar of O, and vice versa. 
This means that the polar line RW 
represents the axis of a cone of revolution. 
The cone of revolution is tangent to the 
Valencia’s sphere, and its points of 
tangency coincide exactly with the vertices 
of the major axis of the ellipse. The polar 
circle of tangency has as geometric center 
the point O, which contains the ellipse 
inscribed in specified polar circle. The angle 
between a generatrix of this cone of 
revolution and the polar line RW is the 
same angle β of the right circular cone. 

 
Figure 10. Gtaphical representations of convergence of the quadrilateral 

of Ptolemy, and tangency in the Valencia’s sphere 



 A NNALS of Faculty Engineering Hunedoara – International Journal of Engineering 
Tome XVI [2018]  |  Fascicule 4 [November] 

65 | F a s c i c u l e  4  

The right triangle defined between the polar line RW, and one of the vertices of the major axis of the ellipse, 
serves to find the height of the polarity director plane. The vertex U of the right circular cone which contains 
the conic section can be located. This height can be measured from the center R of the Valencia’s sphere. 
» Determination of the length of the polar line RW 
In the right triangle RV1W (the cathetus RV1 is the radius of the Valencia’s sphere opposed to the angle β of the 
polar vertex W, and the polar line RW is the hypotenuse), RW is computed as (figure 10): 

 
β

=
sin
RVaRW                                                                 (11) 

By replacing the numerical values, it is obtained: RW = 90.9800012. 
» Determination of the height of the polarity director plane, with respect to the center of the Valencia’s 

sphere 
In the right triangle RUW (the cathetus RU is the height of the PDP with respect to the center R of the Valencia’s 
sphere; and the polar line RW is the hypotenuse), RU is computed as (figure 10): 

α⋅= cosRWRU                                                    (12) 
By replacing the numerical values, it is obtained: RU = 73.60436672. 
» The determination of the metric ratios of proportionality in the quadrilateral of Ptolemy 
The metric ratios of the quadrilateral of Ptolemy, as well as the convergent secants (defined by the extension of 
their pairs of sides), will allow the conservation of proportions, as a function of the variation of the angular value 
α of the secant plane. 
The following relations can be written [3] (in fig. 10): 

212112212211 VVRRRVRVRVRV ⋅=⋅+⋅                                           (13) 

2112 XVXRXVXR ⋅=⋅                                                           (14) 

1122 YVYRYVYR ⋅=⋅                                                         (15) 
» Determination of the focal radii 
The vector rays that start from the poles R1 and R2, are perpendicular to the polar circle of tangency that contains 
the conic section, determining the exact position of the foci of the ellipse. The angle between these vectors 
with respect to the polar axis of the Valencia sphere, is constant and equal to the angle α of the secant plane. 
The orthogonal chords that pass through the focal points F1 and F2, define the rectangle R1SVaR2, and meet the 
equality between their pairs of opposite sides. In this way, the focal radius R1F1 = SF2, and the focal radius R2F2 = 
VaF1. The straight lines drawn from the corners S and Va, which pass through one of the vertices of the ellipse, 
form two equal angles to each other. This angle is measured with respect to the sides of the rectangle R1S and 
R1Va, and is related to the angles (γ = 90º - α), and β. The following relations can be written (in figure 10): 

2
;

2
β+γ

=Ω
β−γ

=µ                                                        (16) 

 Determination of the focal radius R1F1: 

µ⋅=
µ

=⋅=⋅ tanFVFR;
tan

FVVaF;FVFVVaFFR 1211
11

11211111    (17) 

Determination of the focal radius R2F2: 

Ω⋅=
Ω

=⋅=⋅ tanFVFR;
tan

FVSF;FVFVSFFR 2122
22

22122222                              (18) 

By replacing the numerical values, are obtained: R1F1 = 14.8863443, R2F2 = 44.9888425. 
— The cylindrical ellipse 
A right cylinder could be defined as a right cone, whose vertex is located at infinity [2]. The generatrices are 
parallel to the axis of revolution, and always in contact with a circular directrix. The conicity angle is equal with 
90º. 
If the cylindrical surface is intersected by a secant plane with an angle greater than 0º, and smaller than 90º, 
with respect to the axis of the cylinder, it always determines an ellipse, where each vertex of the major axis of 
the ellipse is located in a generatrix of the cylindrical surface. 
Starting from the same length of the major axis of the ellipse obtained with the right circular cone, and with 
the same angular value α of the secant plane, we proceed to determine the parameters of the ellipse, with the 
Valencia’s sphere.  
If the angle complementary to the conicity β is equal to 0º; it follows that the radius of the sphere is equal to 
the semi-major axis of the ellipse, as shown in figure 11. 
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β
=

cos
OVRVa 1                                                                     (19) 

By replacing the numerical values, it is obtained: RVa = OV1 = 33.80565811. 
This means that the center of the sphere 
coincides with the center of the ellipse, and the 
polar axis will be co-linear to the axis of the 
cylinder. Subsequently, from each pole is drawn 
the ray perpendicular to the plane containing the 
ellipse, the angle between the ray and the polar 
axis being the same angle α of the secant plane. 
» Determination of the focal semi-distance of 

the cylindrical ellipse 
In the right triangle R1OF1 (the hypotenuse R1O is 
the radius of the Valencia’s sphere; and the 
cathetus OF1 is the focal semi-distance of the 
ellipse), OF1 is computed as (fig. 11): 

α⋅= sinRVaOF1   (20) 
By replacing the numerical values, it is obtained: 
OF1 = OF2 = 19.8704672. 
» Determination of the focal radii of the 

cylindrical ellipse 
"For every cylindrical ellipse, the remarkable quadrilateral of Ptolemy inscribed in the Valencia’s sphere, will be always 
a rectangle4", where the property of equality between its pairs of sides is fulfilled. That is to say: R1V1 = R2V2 and 
V1R2 = V2R1; therefore, the focal radii are equal to each other, and are determined applying the cosine function. 

α⋅== cosRVaFRFR 2211                                                     (21) 
By replacing the numerical values, it is obtained: R1F1 = R2F2 = 27.3493519. 
» Determination of the minor semi-axis of the cylindrical ellipse 
The minor semi-axis of the ellipse is equal to the focal radius, because the Dandelin spheres have the same 
radius of the cylinder that contains the ellipse. 

2
1

2 )OF()RVa(OB −=                                                   (22) 
By replacing the numerical values, it is obtained: OB = 27.3493519 = R1F1 = R2F2. 
» Determination of the eccentricity and directrices of the cylindrical ellipse 
The eccentricity, depending on the focal semi-distance and the semi-major axis of the ellipse: 

ε = c/a                                                           (23) 
By replacing the numerical values, it is obtained: ε = 0.587785249. 
The distance d with respect to the nearest vertex is computed with relation: 

1

11
2

1
2

OF
OFOVOVd;

c
acad ⋅−

=
−

=                                                    (24) 

By replacing the numerical values, it is obtained: d = 23.70796294. 
The distance between the directrix and the center of the Valencia’s sphere is: 

α
=

sin
RVaOD1                                                                    (25) 

By replacing the numerical values, it is obtained: OD1 = 57.513621. 
4. CONCLUSION 
The Valencia’s sphere, together with the properties of the remarkable quadrilateral of Ptolemy, represents a very 
simple and precise geometric method, for the determination of the ellipse’s parameters, without to use a 
Cartesian coordinate system. This is possible if the variables of: the length of the major axis of the ellipse, the 
conicity angle, and the angle of the secant plane containing the conic are known; as it happens in three-
dimensional space. 
The parameterization of the ellipse, obtained from the Valencia’s sphere, can be compared with the algebraic 
parameters found by mathematical equations, and thus, to perform a study that unifies the two-dimensional 
(2D) analysis, with the three-dimensional (3D) aspects involved in the generation of the conics. 

 
Figure 11. Comparison between a cylindrical and conical ellipse 



 A NNALS of Faculty Engineering Hunedoara – International Journal of Engineering 
Tome XVI [2018]  |  Fascicule 4 [November] 

67 | F a s c i c u l e  4  

In equality conditions, when comparing a conical ellipse with a cylindrical ellipse, it follows that they differ in 
their eccentricity; therefore, it is necessary to clarify this observation within the mathematical and geometric 
context; and thus be able to resolve the concern about, if: “The orbits of the planets, describe conical or 
cylindrical elliptical trajectories? and if “Are the corrections of the trajectories partly due to this justification?” 
The concepts used in the Valencia’s sphere, can be incorporated into the design of a software or application 
appropriate for Astronomy and Physics, which allows determining various aspects, such as the parameters of 
the elliptical trajectories, distances relative to the polarity director plane, perihelion and aphelion, eccentricities, 
focal radii, polar distances from the geometric center of the ellipse, focal semi-distances, semi-axes, distance to 
the directrices, etc. The proposed methodology can be implemented in the curricula of a curriculum, as a new 
pedagogical resource, in the subjects related to the study and analysis of the ellipses, where the other focal-
type conics are explored, while retaining, a three-dimensional approach. 
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