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Abstract: An exact solution of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free 
convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium 
is presented. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless 
momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform 
method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and 
boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin 
friction, Nusselt number and Sherwood number are also obtained. The accuracy of the obtained solutions is checked through 
imposed conditions and graphs. Furthermore, some well-known established results from the literature are obtained as limiting 
cases from the present solutions. Numerical results for the velocity field, temperature field and concentration field are graphically 
displayed. 
Keywords: Inclined Plate, Laplace Transform, Darcian Drag force, Chemical reaction, heat and mass transfer 
 
 
1. INTRODUCTION 
The phenomenon of heat and mass transfer occurs as a result of combined buoyancy effects of thermal diffusion and 
diffusion through chemical species, which plays an important role in geophysics, aeronautics and chemical engineering. 
Some industrial applications are found in food drying, food processing and polymer production. Hence, a considerable 
amount of attention has been focused in recent years by various scientists and engineers to study problems involving the 
conjugate phenomenon of heat and mass transfer either analytically or numerically and the references therein). On the 
other hand, the studies on the magnetohydrodynamic (MHD) free convection flow with simultaneous effects of heat and 
mass transfer are encountered in electric power generation, metallurgy, astrophysics and geophysics, solar power 
technology, space vehicle, nuclear engineering application and other industrial areas (2010, 2010). Rajput and Kumar 
(2012) studied the MHD flow past an impulsively started vertical plate with variable temperature and mass diffusion. They 
used the Laplace transform method to find the exact solutions for velocity, temperature and concentration. In a 
subsequent year Rajput and Kumar (2012) extended Rajput and Kumar (2012) by taking the thermal radiation effect. 
Oscillatory flow of a viscous, incompressible electrically conducting fluid with heat radiation is analyzed by Singh (2011) 
and established the closed form solutions. Recently, Turkyilmazoglu and Pop (2012) extended a flow model by introducing 
a heat source term and by taking two different types of thermal boundary conditions namely prescribed wall temperature 
and prescribed heat flux. Furthermore, the free convection flow over vertical surfaces immersed in porous media has 
paramount importance because of its potential applications in soil physics, geohydrology, and filtration of solids from 
liquids, chemical engineering and biological systems (2012). Osman et al. (2011) studied analytically the thermal radiation 
and chemical reaction effects on unsteady MHD free convection flow in a porous medium with heat source/ sink. By taking 
the porous medium effect, Sami et al. (2012) provided an exact analysis to the study of the magnetohydrodynamic free 
convection flow of an incompressible viscous fluid past an infinite vertical oscillating plate with uniform heat flux. An in 
other investigation, Sami et al. (2012) studied the MHD free convection flow in a porous medium with thermal diffusion 
and ramped wall temperature. They obtained exact dimensionless solutions of momentum and energy equations, under 
Boussinesq approximation using the Laplace transforms. In addition to this, many researchers like Makinde (2012), Khan 
et al. (2011), Pal and Mondal (2011), Chandrakala (2010), Narahari and Yunus (2011), Narahari and Ishakh (2011), Seth et al. 
(2011) and Ming and Wang (2010) have discussed different flow situations for different fluid models either with heat 
transfer or mass transfer or both of them together in the presence of different effects such as MHD, porosity, thermal 
radiation, chemical reaction etc. Recently, Ziyauddin and Kumar (2010) studied the radiation effects on unsteady MHD 
natural convection flow in a porous medium with conjugate heat and mass transfer past a moving inclined plate in the 
presence of chemical reaction, variable temperature and mass diffusion. They used an explicit finite difference method to 
solve the coupled linear partial differential equations numerically, and the results are graphically displayed. Unfortunately, 
in this work the plate is not porous as the authors mentioned in the paper. On the other hand the numerical solutions of 
the free convection problems are more convenient and easy to handle as compare to exact solutions. 
The aim of the present work is to provide an exact solution for the problem of Ziyauddin and Kumar (2010). More exactly, 
in this paper we have developed closed form exact solutions for the unsteady MHD free convection flow of a viscous fluid 
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over an inclined plate with variable heat and mass transfer in a porous medium. It also appears from the literature that 
Muthucumaraswamy and Janakiraman (2006) obtained exact solutions for the MHD flow of viscous optically thin fluid past 
a vertical flat plate in a non-porous medium. They considered uniform heat and variable mass transfer. Furthermore, their 
solution of velocity has typo mistake (see Eq. 3.7) and does not satisfy the imposed boundary conditions (see Eq. 3.4). It is 
worth mentioning that the main focus of the present study is not to reproduce the results of Muthucumaraswamy and 
Janakiraman (2006). In fact, the present model is more general as it considers the fluid to be optically thick instead of 
optically thin and takes into account chemical reaction, porous medium, variable temperature at the wall and the plate is 
inclined at a certain angle with vertical axis. 
2. FORMULATION OF THE PROBLEM 
Let us consider the unsteady flow of an incompressible viscous fluid past an infinite inclined plate with variable heat and 
mass transfer. The x-axis is taken along the plate with the angle of inclination to the vertical and the y-axis is taken normal 
to the plate. The viscous fluid is taken to be electrically conducting and fills the porous half space y > 0. A uniform 
magnetic field of strength B0 is applied in the y-
direction transversely to the plate. The applied magnetic 
field is assumed to be strong enough so that the induced 
magnetic field due to the fluid motion is weak and can 
be neglected.  
According to Cramer and Pai (1973), this assumption is 
physically justified for partially ionized fluids and metallic 
liquids because of their small magnetic Reynolds 
number. Since there is no applied or polarization voltage 
imposed on the flow field, the electric field due to 
polarization of charges is zero. Initially, both the fluid and 
the plate are at rest with constant temperature T∞ and 
constant concentration C∞. At time t = 0+, the plate is 
givena sudden jerk, and the motion is induced in the 
direction of flow against the gravity with uniform velocity 
u0 . The temperature and concentration of the plate are 
raised linearly with respect to time. Also, it is considered that the viscous dissipation is negligible and the fluid is thick gray 
absorbing-emitting radiation but non-scattering medium. Since the plate is infinite in the (x , z) plane, all physical 
variables are functions of y and t only. The physical model and coordinates system is shown in Figure 1. In view of the 
above assumptions, as well as of the usual Boussinesq’s approximation, the governing equations reduce 

∂u�
∂t̅

= ν
∂2u�
∂y�2

− �
σB02

ρ
+
ν
K�
�u� + gβ�T − T∞� cosα+ +gβC�C− C∞� cosα ,                        (2.1) 

∂T
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=
κ
ρCp

∂2T
∂y2
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1
ρCp
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∂qr
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 ,                                                                 (2.3) 

∂C
∂t

= D
∂2C
∂y2

− Cr�C− C∞� ,                                                                   (2.3) 

The initial and boundary conditions are: 

� u(y, 0) = 0 ,   T(y, 0) = T∞ ,   C(y, 0) = C∞     on  y > 0,
u(∞, 0) = 0 ,   T(∞, 0) = T∞ ,   C(∞, 0) = C∞      as      t > 0

 �                           (2.4), 

where A = u02/ν. Following Magyari and Pantokratoras [28], we adopt the Rosseland approximation for radiative flux qr, 
namely 

�
u�0, t� = u0

T�0, t� = T∞ + �Tw − T∞� At ,
C�0, t� = C∞ + �Cw − C∞� At ,   t > 0

� 

qr = −
4σ0
3K0

∂T
4

∂y
                                                                            (2.5) 

We assume that the temperature differences within the flow are sufficiently small and T
4

 can be expressed as a linear 

function of the temperature. This is accomplished by expanding T
4

 in a Taylor series about T∞ and neglecting the higher 
order terms, we get 

 
Figure 1: Physical model and coordinates system 
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                                                                      (2.6) 

Substitution Eqs. (2.5) and (2.6) into Eq. (2.2), yields 
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3κK0
�
∂2T
∂y2

 ,                                                           (2.7) 

Introducing the following dimensionless variables 
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In view of (2.8), equations (2.1), (2.3) and (2.7) reduce to 
∂u
∂t

=
∂2u
∂y2

− Nu + Grθ cosα+ Gmϕ cosα ,                                               (2.9) 

Pr
∂θ
∂t

= (1 + Ra)
∂2θ
∂y2

 ,                                                                  (2.10) 

∂ϕ
∂t

=
1
Sc
∂2ϕ
∂y2

− Crϕ ,                                                                    (2.11) 

where N = M + K−1 . 
The corresponding initial and boundary conditions (2.4), become 

⎩
⎪
⎨

⎪
⎧

 

t ≤ 0: u(y, t) = 0 ,   θ(y, t) = 0,   ϕ(y, t) =  0,   y > 0

u(0, t) = 1 ,   θ(0, t) = t,   ϕ(0, t) =  t,

u(∞, t) → 0,   θ(∞, t) → 0,   ϕ(∞, t) → 0

 

⎭
⎪
⎬

⎪
⎫

 ,                           (2.12) 

3.  METHOD OF SOLUTION 
The equations (2.9) – (2.11) represent a set of partial differential equations and thus in order to reduce these into a set of 
ordinary differential equations in dimensionless form we adopt the Laplace transform to the system of Eqs. (2.9) – (2.11) 
and using the initial conditions from Eq. (2.12), we obtain 

d2u(y, q)
dy2

− (q + N)u(y, q) = −Gr cosα θ(y, q) − Gm cosα ϕ(y, q) ,                        (3.1) 

d2θ(y, q)
dy2

= −aq θ(y, q) ,                                                               (3.2) 

d2ϕ(y, q)
dy2

= −Sc(q + Cr) ϕ(y, q) ,                                                       (3.3) 

with the transformed boundary conditions 

u(0, q) =
1
q

,   u(∞, q) = 0 ,   θ(0, q) =
1

q2
,   θ(∞, q) = 0 ,   ϕ(0, q) =

1
q2

,   ϕ(∞, q) = 0 ,     (3.4) 

where u(y, q), θ(y, q) and ϕ(y, q) are the Laplace Transforms of u(y, t), θ(y, t) and ϕ(y, t) respectively, and a =
Pr

1+Ra
. 

Now solving the system of Eqs. (2.9)–(2.11) subject to the boundary conditions (2.12), one obtains 
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θ(y, q) =
1

q2
e−y�aq ,                                                                     (3.6) 
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ϕ(y, q) =
1

q2
e−y√Sc�Cr+q                                                                 (3.7) 

The inverse Laplace transforms of Eqs. (3.5) – (3.6) yield 

u(y, q) = f1(y, t, N) −
a1cosα

N1
2 �

f1(y, t, N) − eN1tf1(y, t, N + N1)− f1�y√a, t, 0�
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� 

−
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�   ,                   (3.8) 

θ(y, q) = �t +
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2 �  erfc�
y√a
2√t

� −
y√at
2√π

e−
ay2

4t    ,                                          (3.9) 

ϕ(y, q) = f2�y√Sc, t, Cr� ,                                                              (3.10) 
 Limiting Cases 
The following published results are reduced as special cases from the present solutions. 
i) By neglecting the thermal and mass transfer effects (when a1=a2 =0), into Eq. (3.8), we get 

u(y, t) = f1(y, t, N)                                                                     (3.11) 
which is quite identical to the known result obtained from Sami et. al (2012), Eq. (3.7) for ω→0 i.e. for the impulsive motion 
of the plate. Furthermore, the solution corresponding to hydrodynamic fluid passing through a non-porous medium are 
immediately obtained from Eq. (3.11) by neglecting the magnetic and porous effects (Ra =0 when M=0 and K→ω). 
ii) Now by taking Cr→ 0 into Eq. (3.7), we get 

ϕ(y, t) = f3�y√Sc, t, 0�                                                                  (3.12) 
similar to the solution obtained by Muthucumaraswamy and Janakiraman (2006), Eq. (3.2). 
iii) Finally by substituting Ra =0 and Cr =0 into Eqs. (2.10) and (2.11), we immediately obtain 

θ(y, t) = f3�y√Pr, t, 0�                                                                  (3.13) 
ϕ(y, t) = f3�y√Sc, t, 0�                                                                  (3.14) 

which are identical to the solutions obtained by Rajput and Kumar (2012), Eqs. (3.7) and (3.6) respectively. Furthermore, it 
is worth mentioning that Eqs. (3.8), (3.9) and (3.10), satisfy all imposed initial and boundary conditions. Hence this also 
provides a useful mathematical check to our calculi. 
 Skin-Friction  
The skin friction τ evaluated from Eq. (3.8) is given by 

τ = −�
∂u
∂y
�
y=0

= −g1(t, N) +
a1cosα

N1
2 �

g1(t, N) − eN1tg1(t, N + N1)− √ag1(t, 0)
+eN1t√ag1( t, N1) + N1g2(t, N)− N1√ag3(t, 0)

� 

+
a2cosα

N2
2 �

g1(t, N) − eN2tg1(t, N + N2)− √Scg1(t, Cr)
+eN2t√Scg1( t, Cr + N1) + N2g2(t, N) − N2√Scg2(t, Cr)

�   ,                  (3.15) 

 Nusselt Number  
The rate of heat transfer evaluated from Eq. (3.9) is given by 

Nu = 2�
at
π

                                                                                  (3.16) 

 Sherwood Number  
The rate of mass transfer evaluated from Eq. (3.10) is given by 

Sh = √Sc g2(t , Cr)                                                                            (3.17) 
4. VALIDITY 
Table 1 provides the comparison of our results for skin friction with 
those of Ziyauddin and Kumar (2010) corresponding to the cooling 
of the plate. The results are found quite identical in the integral 
part. However, the physical behavior of various parameters on the 
skin friction t in the present work is similar to that of Ziyauddin and 
Kumar (2010) i.e. skin friction increases with increasing Pr, M and 
Cr, but decreases when Ra is increased. 
In Table 2, we compare our numerical result of Nusselt number for 
different values of Pr with Turkyilmazoglu and Pop (2012), Table. 6 
for N=Q=0. It is interesting to see that the same data as Turkyilmazoglu and Pop (2012) has obtained. This comparison 
shows the accuracy of our model. Nusselt number increases with the increase of Pr. 

Table-1: Comparison of skin friction t  
with Ziyauddin and Kumar (2010) 

Pr M Cr Ra 
Present 
study 

Ziyauddin and 
Kumar (2010) 

0.71 2 0.1 5 3.507153 3.507201 
7 2 0.1 5 4.107925 4.107893 

0.71 10 0.1 5 4.829181 4.829176 
0.71 2 0.5 5 3.805627 3.805630 
0.71 2 0.1 15 3.416375 3.416381 
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5. RESULTS AND DISCUSSION 
In this field of study, in order to examine the consequences of velocity field, 
temperature profile and concentration profiles by allotting numerical values for 
several arguments. During the numerical computation, the value of the Prandtl 
number is chosen as Pr=0.71 (air), which is the most encountered fluid in nature 
and frequently used in engineering and industry. The graphical results are 
plotted using some built-in functions in the computational software 
Mathematica 8.0. 
Figure 2 illustrates the variation of concentration distribution of the flow field for 
different values of chemical reaction parameter and time. The physical effect of 
chemical reaction parameter Cr is seen from this figure, which clearly 

demonstrates that concentration profiles decrease 
rapidly when Cr is increased. Moreover, the time 
parameter has escalated the species of concentration 
in the concentration boundary layer. 
For various values of Ra (radiation parameter) for both 
the cases of Pr=0.025 (mercury) and Pr=0.71 (air), the 
temperature profile is shown in Figure 3 at t = 0.5. It is 
seen that there is a decrease in temperature in Ra and 
a similar effect has been observed for Prandtl number. 
Physically, it is true due to the fact that an increase in 
Prandtl number increases the viscosity of the fluid, 
becomes thick and consequently leads to a decrease 
in the thermal boundary layer. 
Figure 4 depicts the influence of porosity parameter 
(K) and magnetic field (M) on the velocity profiles at 
t=0.5. The range of magnetic field is taken from 0 to 5. 
The velocity of the flow field is found to decrease in 
presence of magnetic field. Physically, it is true due to 
the fact that the application of a transverse magnetic 
field to an electrically conducting fluid gives rise to a 
body force known as Lorentz force which tends to 
resist the fluid flow and slow down its motion in the 
boundary layer region. It is evident from Figure 4 that 
fluid velocity decreases with an increase in the 
porosity parameter (K). Physically, this refers to the fact 
that increasing the tightness of the porous medium 
which is represented by increase in K results in 
increasing the resistance against the flow. 

 
Figure 4: Velocity distribution for K and M 

 
Figure 5: Velocity distribution for Ra and α 

Figure 5 shows the effect of thermal radiation (Ra) and inclination of the plate on the flow velocity. It is found that the flow 
velocity accelerated as Ra increases. Physically it is true, as higher radiation occurs when temperature is higher and 
ultimately the velocity rises. As expected, the fluid velocity increases and the peak value is more distinctive due to increase 
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Table-2: Comparison of Nusselt number 
Nu with Turkyilmazoglu and Pop (2012) at 
t = 0.5 without thermal radiation and heat 

generation: 

Pr 
Present 
study 

Turkyilmazoglu 
and Pop (2012) 

0.71 0.547134 0.547141 
1 0.612578 0.612601 
3 1.052173 1.052182 
7 1.617354 1.617347 

10 1.917332 1.917349 
 

 
Figure 2: Concentration distribution for t and Cr 

 
Figure 3: Temperature distribution for Ra and Pr 
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in Ra when α = π/3. The velocity distribution attains a maximum value in the neighborhood of the plate and then decreases 
properly to approach the free stream value. Without inclination no peak value has attained near the plate and however, 
an increase in the inclination enhanced the flow velocity. 
6. CONCLUSIONS 
The analytical solutions of heat and mass transfer in the MHD free convection flow of an electrically conducting 
incompressible viscous fluid over an inclined plate with variable heat and mass transfer passing through a porous medium 
are obtained using the Laplace transform technique. The effects of radiation and chemical reaction are also considered 
and required expressions for skin-friction, Nusselt number and Sherwood number are evaluated. The comparison for the 
present numerical results of skin-friction and Nusselt number are shown in tables. 
The present study brings out the following significant findings: 

— Transverse magnetic field produces a type of resistive force which opposes the flow. 
— The effects of the permeability and magnetic parameters on velocity are opposite. 
— The higher the porosity parameter, the more sharply is the reduction in velocity. 
— Temperature decreases with increasing Pr and as well as Ra. 
— Concentration decreases with increasing Cr and increases with increasing t. 
— Skin-friction increases with increasing Pr, M, Cr and decreases if Ra increases. 
— Nusselt number increases for increasing Pr. 

Appendix:  

N1 =
N

a − 1
 ,   N2 =

N− CrSc
Sc − 1

 ,   a1 =
Gr

a − 1
 ,   a2 =

Gm
Sc − 1

   for  a ≠ 1  and  Sc ≠ 1. 
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∂f2
∂v
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−2√wte−wt − √π erf�√wt� − 2wt√π erf�√wt�
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 , 

g3(t, w) =
∂f3
∂v

(v, t)�
v=0

= −2tg1(t, 0) . 

Nomenclature: 
u axial velocity    
T temperature of the fluid  Cr dimensionless chemical reaction 

parameter 
C species concentration  Sc Schmidt number 
qr radiation heat flux  K0 mean absorption coefficient 

x , y dimensional distances along and 
perpendicular to the plate 

  Greek Symbols 

t dimensional time  σ electrical conductivity 
K > 0 permeability of the porous medium  ν=µ/ρ kinematic viscosity 

g acceleration due to gravity  µ viscosity 
CP specific heat at constant pressure  ρ density of the fluid 
D mass diffusibility  βT coefficient of thermal expansion 
Cr chemical reaction parameter  βC coefficient of concentration 

expansion 
M magnetic parameter / Hartmann 

number 
 κ thermal diffusivity 

K permeability parameter  α inclination of the plate 
Gr thermal Grashof number  σ0 Stefan-Boltzmann constant 

Gm mass Grashof number   Subscripts 
Pr Prandtl number  w Wall condition 
Ra radiation parameter  ∞ Free stream condition 
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