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Abstract: In this paper, the flow of a micropolar fluid conveyed through porous channel driven by suction or injection with high 
mass transfer is analyzed using the regular perturbation method to solve the coupled nonlinear ordinary equations arising from 
the mechanics of fluid. The developed analytical solutions are used to investigate the effects of flow and rotation parameters 
such as Reynolds number and micro rotation parameters. Obtained analytical results when compared to results of the other 
methods in the existing works in literature are in good agreements. The results obtained from this paper can be used to further 
the study of the behavior of micropolar fluids in applications including as lubricants, blood flow porous media, micro channels 
and flow in capillaries. 
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1. INTRODUCTION 
The theory of micropolar fluid was established by Eringen [1] in his bid to model the behavior of non-Newtonian flow 
whose micro constituents rotate during fluid flow. Moreover, in his work, he developed the constitutive relation to include 
more material parameters and micro rotation vectors making the usual equations for Newtonian flow non-linear. Also, in 
the study of micropolar fluids, Idris [2] studied the effect of non-uniform temperature gradient on micropolar fluids under 
convective heat transfer while Yuan [3] investigated the behavior of micropolar fluids under laminar flow condition within 
a porous channel. Kelson [4-5] presented the effect of surface conditions on micropolar fluid flow over a stretching sheet 
with strong suction and injection. The flow of viscous fluid was studied by Zaturska et al. [6] along a porous wall during 
suction. Power law variations were adopted by Cheng [7] to study micropolar fluid from a vertical truncated cone under 
natural convection. Joneidi et al. [8] applied the differential transformation method (DTM) to heat transfer problems of 
nonlinear equations while Hassan [9] adopted the DTM in solving Eigen value problems. Magyari and Keller [10] studied 
boundary layer flows induced by permeable walls using exacts solutions. Natural convective flow over horizontal plate 
was investigated by Murthy and Singh [11] presenting the thermal effects with surface mass flux on convection. 
The relevance and importance of pertubation solutions to provide approximate analytical solutions have been proven 
beyond reasonable doubt in literatures. However, owing to the problem of weak nonlinearites and small parameters which 
are sometimes artificial makes it necessarily to develop other analytical methods of solutions to overcome these limits [12-
26]. Consequently, the use of other  approximate analytical methods such as differential transform method (DTM), 
homotopy analysis method (HAM), optimal homotopy asymptotic method (OHAM), variational iteration method (VIM), 
Adomian decomposition method (ADM) and some other approximation methods have been developed. Methods such 
as DTM, HAM and ADM however require the need to find an initial condition that will satisfy the boundary condition which 
theories have not been rigorously proven for all cases. Making it necessary to use computational tools resulting to higher 
computational cost to provide problem solutions. Also, OHAM requires determining constants using auxilliary fuctions 
which may be too rigorous to determine for some nonlinear problems. Since, the solutions reported for the other relatively 
sophisticated methods to nonlinear problems have good accuracy, but they are more complicated for applications than 
perturbation methods. Therefore, over the years, the relative simplicity and high accuracy especially in the limit of small 
parameter have made perturbation method an interesting tool among the most frequently used approximate analytical 
methods [27-30]. Therefore, in this paper, the flow and rotation of micropolar fluids transported through porous channels 
with high mass transfer is studied using the regular perturbation method. The effect of material and microrotation 
constituent on the flow process is investigated.  
2. MODEL DEVELOPMENT AND ANALYTICAL SOLUTION 
Consider the laminar, incompressible and isothermal flow of a micropolar fluid through a channel with porous walls where 
fluid undergoes suction or injection with speed q. The channel wall are parallel to the x axis as described using Cartesian 
co-ordinate with width of distance 2h and located at a reference y = ±h. The formulation of the model development of 
the micropolarfluid is developed with respect to the above conditions following the assumptions that the fluid is 
incompressible, flow is steady and laminar. Also radiation heat transfer is negligible. 
Following the assumptions, the governing equations of the channel flow are given as 

0u u
x y
∂ ∂

+ =
∂ ∂                                                                               (1)   
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The governing equations expressed in Eqs. (1)-(4) include micro rotation or angular velocity and material parameters which 
direction is in the xy- plane consistent with other micropolar fluid studies. In this study, material parameters are taken as 
independent and constant.  

( , ) 0, ( , ) ,

( , h) s
x h

u x h v x h q

uN x
y =±

± = ± = ±

∂
± = −

∂                                                                           (5) 
Fluid flow is assumed symmetric about y=0 

( ,0) ( ,0) 0u x v x
y
∂

= =
∂                                                                             (6) 

The value of s depicts various flow situation of the micropolar fluid. When s=0 the microelement close to the porous wall 
surface are unable to rotate while when s=0.5 the microrotation is same as the fluid vorticity at the boundary. Similarly 
fluid injected or removed from the stream is depicted by the value of q. Given that suction is the condition when q>0 and 
injection is the situation when q<0. The governing equation is therefore simplified by including micropolar effects by 
assuming stream functions and micropolar to the Berman’s similarity solution [26]: 

( )qxFψ η= −                                                                                      (7) 

2 ( )qxN G
h

η=
                                                                                   (8) 

where 
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∂ ∂                                         (9)  
Dimensionless micropolar parameters and non-zero cross flow Reynolds number are introduced as  

1 2 32 2, , ,Resv j qN N N h
h h

κ ρ
µ µ µ

= = = =
                                                        (10)  

With the aid of Eqs. (7)-(10) the Eqs (1)-(4) may be reduced to ordinary nonlinear differential equations as stated below: 
4 2 3 2
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                                                 (11) 
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                                                 (12) 
With the appropriate boundary conditions defined as 

' ''( 1) 1,F ( 1) 0, ( 1) ( 1)F G sF± = ± = ± = ±                                                                    (13) 
Symmetry of fluid flow through the porous channel is assumed therefore boundary condition takes the form 

'' ' ''(0) (0) (1) 0,F(1) 1,G(1) sF (1)F F F= = = = =                                                           (14)  
The regular pertubation method which is an analytical scheme for providing approximate solutions to the ordinary 
differential equations,is adopted in generating solutions to the coupled ordinary nonlinear differential equation .The flow 
and rotation series solution where ε is the small pertubation parameter, may be presented in the following form. 

2 3
0 1 2 ( )F F F F Oε ε ε= + + +                                                           (15)  

2 3
0 1 2 ( )G G G G Oε ε ε= + + +                                                          (16)  

Substituting Eqs.(15) and (16) into (11)  and selecting at the the terms of the same orders, yields 
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Substituting Eqs.(15) and (16) into (12) and selecting at the various orders yields 
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The boundary conditions for the leading order equation is given as 
'' '

0 0 0 0 0 0(0) (0) (1) 0,F (1) 1,G (0) (1) 0F F F G= = = = = =                                                    (23) 
With the aid of the boundary conditions Eq. (23)  it could be expressed easily that Eq. (17) and (20) can be shown as 

( )( )2
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2
F

η η −
= −

                                                                                           (24) 
Eqs. (24),(27)and (30) are substituted back into the series solution Eq. (15) The flow profile solution is expressed in its final 
form as 

0 0G =                                                                                                    (25) 
'' '

1 1 1 1̀ 1 1(0) (0) (1) 0,F (1) 1,G (0) (1) 0F F F G= = = = = =                                                (26) 
With the aid of the boundary conditions in Eq. (26),  the solutions of Eqs. (18) and (21) can be shown as  
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The boundary conditions for the second order equation are given as 
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Using the boundary conditions in Eq. (29), it can be easily shown that the solutions of Eq. (19) and (22) are 
2
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Substituting Eqs. (24),(27) and (30) into the series 
solution Eq. (15) The rotation profile solution is give be 
expressed in its final form as 
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Also, after substituting Eqs. (25),(28) and (31) into the 
series solution Eq. (16). The rotation profile solution is 
give be expressed in its final form as 
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3. RESULTS AND DISCUSSION 
The result obtained from the analytical solutions is 
discussed here, where effect of parameters on flow and 
rotation is reported graphically. The effect of micropolar 
fluid parameters at various values on the velocity and 
rotation profile is presented.  
The Figure 1 shows the effect of the Reynolds number 

(Re) on velocity profile. It can be depicted that the velocity distribution decreases as Re increases when fluid is undergoing 
suction and during injection the velocity profile increases for increasing values of Re. 

 
Figure 1. Effect of Reynold’s number (Re) on velocity profile           Figure 2. Effect of micro rotation parameter, N1 on velocity 

when N1=N2=1 and N3=0.01.                                    profile when -Re=N2=1 and N3=0.01. 

 
              Figure 3. Effect of micro rotation parameter, N2                                       Figure 4. Effect of Reynolds number, Re  
            on velocity profile when -Re=N1=1 and N3=0.01.                              on rotation profile when N1=N2=1 and N3=0.01. 
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Table: Comparison of Numerical and regular perturbation 
solution when N1=N2=1,,N3=0.1 and Re=-1. 

 G(η) 

η 
NM 
[13] 

Present 
work 

NM 
[13] 

Present 
work 

0 0.0000 0.0000 0.0000 0.0000 
0.05 0.0752 0.0749 -0.0202 -0.0214 
0.1 0.1500 0.1495 -0.0401 -0.0424 

0.15 0.2240 0.2232 -0.0595 -0.0629 
0.2 0.2969 0.2959 -0.0780 -0.0824 

0.25 0.3683 0.3671 -0.0954 -0.1006 
0.3 0.4378 0.4365 -0.1113 -0.1172 

0.35 0.5051 0.5035 -0.1256 -0.1319 
0.4 0.5696 0.5680 -0.1378 -0.1445 

0.45 0.6311 0.6295 -0.1477 -0.1544 
0.5 0.6892 0.6876 -0.1550 -0.1615 

0.55 0.7435 0.7420 -0.1592 -0.1654 
0.6 0.7937 0.7922 -0.1601 -0.1658 

0.65 0.8392 0.8379 -0.1572 -0.1623 
0.7 0.8798 0.8787 -0.1503 -0.1545 

0.75 0.9152 0.9143 -0.1388 -0.1423 
0.8 0.9448 0.9442 -0.1225 -0.1251 

0.85 0.9685 0.9681 -0.1009 -0.1027 
0.9 0.9858 0.9856 -0.0736 -0.0746 

0.95 0.9964 0.9963 -0.0401 -0.0405 
1.00 1.0000 1.0000 0.0000 0.0000 
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Figure 2 shows the effect of microrotation parameter (N1). From the figure, increasing values of N1 parameter the velocity 
profile decreases slightly which is as a result of an increase in rate of shear at the wall causing a decrease in boundary layer 
thickness. Effect of the microrotation parameter (N2) on the velocity profile is depicted in Figure 3. The result shows a slight 
increase in velocity distribution at increasing values of N2 parameter due to increase in momentum boundary layer 
thickness near the porous wall. 

 
                    Figure 5. Effect of micro rotation parameter, N1                             Figure 6. Effect of micro rotation parameter, N2  
                 on rotation profile when –Re =N2=1 and N3=0.01.                       on rotation profile when –Re =N1=1 and N3=0.01. 

Figure 4 shows the effect of Reynolds number (Re) on 
rotation profile. It could be seen from the figure thatat 
increasing values of Re rotation distribution decreases up 
till point η = 0.6 (not accurately determined) for suction, 
thereafter rotation distribution increases for increasing 
values of Re during injection. This can be physically 
explained that at increasing Re minimum point of 
micropolar fluid rotation is still retained at the origin. As 
micro rotation parameter N1 increases for suction flow 
the rotation profile decreases till η=0.56 (not accurately 
determined) then the reverse is the case for injection as 
depicted in Figure 5 illustrating there is an increase from 
suction to injection. During suction flow at increasing 
values of micro rotation parameter N2 it is shown from 
the Figure 6 that rotation profile increases for suction 

thereafter reduces during injection. Also the effect of microrotation parameter N3 on rotation profile is seen in Figure 7. 
As it is observed, increasing values of N3 parameter shows an increasing rotation distribution for suction till point η=0.6 
(not accurately determined). Thereafter rotation distribution decreases for injection flow. 
4. CONCLUSION 
In this work, the flow of a micropolar fluid conveyed through porous channel driven by suction or injection with high 
mass transfer has been analyzed using the regular perturbation method. The developed analytical solutions are used to 
investigate the effects of flow and rotation parameters such as Reynolds number and micro rotation parameters. The 
results obtained can be used to advance the study of micropolar fluid in processes such as blood flow, turbulent shear 
flow, micro channel and porous channel. 
Nomenclature 

F dimensionless streamfunction 
G dimensionless microrotation 
H  width of channel (m) 
j micro-inertia density 
N microrotation/angular velocity (S-1) 
N1,2,3 dimensionless parameter 
p embedding parameter  
q  mass transfer parameter(ms-1) 
Re  Reynolds number 

s microrotation boundary condition 
u,v    Cartesian velocity components (ms-1) 
x,y   Cartesian coordinate parallel and normal to channel (m) 
η dimensionless normal distance 
μ dynamic viscosity (kgm-1s-1) 
κ coupling coefficient (kgm-1s-1) 
ρ fluid density (kgm-3) 
ψ stream function (m2s-1) 
υs microrotation / spin gradient viscosity (m kg s-) 
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