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Abstract: This article investigates how the material composition can affect the in-plane stability of circular arches with bi-layered 
rectangular cross-section. The Euler-Bernoulli beam theory is used. The materials are linearly elastic and isotropic. The one 
dimensional mechanical model is geometrically nonlinear: moderately large rotations are assumed. The end-supports are ideal 
pins and out-of plane displacements are restricted. The loading is a concentrated force at the crown. Evaluations are carried out 
graphically. It is found that not only the geometry but the material distribution has considerable effects on the critical load. 
Keywords: nonlinear stability, circular arch, bi-layered, buckling 
 
 

1. INTRODUCTION 
Curved structural and machine elements have various engineering applications [1,2,3]. Arches are commonly used in 
engineering structures because of their favourable load carrying capabilities. As buckling is a common way of failure, it has 
been the subject of investigations for quite a while. It is known that the mechanical behaviour of shallow circular arches is 
strongly nonlinear. In recent years, many novel mechanical models have been introduced like [3,4] by Bradford et al. These 
articles investigate the in-plane static behaviour of such structural elements with uniform cross-section using a one-
dimensional beam model. Recent relevant results for non-uniform members were published e.g., in [5,6] by Jin et al. There 
are also available results for nonhomogeneous materials by Bateni et al [7,8]. 
In the current article, based on [9-11], it is demonstrated how the material composition affects the critical (buckling) load 
of bi-layered uniform shallow circular arches made of linearly elastic and isotopic materials. The mechanical model is 
geometrically nonlinear, using the single-layer Euler-Bernoulli beam theory. Moderately large rotations are assumed. The 
arch is pinned at both ends and the loading is a constant concentrated force applied at the crown point. 
2. KINEMATICS 
Figure 1 shows a portion of the arch; the orthogonal curvilinear 
coordinate system )(ξηζ  is attached to the centroidal axis with 
radius oρ  and the unit vectors are ηξ ee ,  and ζe . The cross-section 

of the arch is uniform and symmetric to the axis ζ . On the centroidal 
axis, the E -weighted first moment of the cross-section to η  is zero. 
The Young modulus E  can depend on ζ . The arc coordinate s  is 
measured from the crown point while o/s ρ=ϕ  is the angle 
coordinate. The included angle of the arch is ϑ2 . 
The mechanical model is based on the single-layer Euler-Bernoulli 
beam theory. Just as in [3,9], it considers small axial strains )( oξε  and moderately large rotations ( ηψo ) as  
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with oom w;u;ε  being the membrane strain and the pre-buckling displacements of the centroidal axis in the 
tangential/normal direction. 
Recalling the Hooke law, the axial force ( N ) and bending moment ( M ) are given by [9]  
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After buckling, the increments are denoted by subscript b(...) , therefore, similarly as beforehand, the typical quantities are  
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Figure 1: The arch and its centroidal axis 
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3. EQUILIBRIUM EQUATIONS  
Altogether, three equilibrium states are distinguished: the initial, the pre-buckling (the effect of the load on the initial 
shape is accounted not to overestimate the critical load) and the post-
buckling state. Figure 2 shows the centroidal axis of the arch in the initial 
configuration (continuous line) and in the pre-buckling equilibrium state 
(dashed line) assuming symmetric support and loading conditions. Using a 
generalized approach, at this point, the arch is rotationally restrained at the 
ends with torsional springs whose spring constants are γk , rk γ  and the 

loading consists of the distributed forces ξζ += eef tn ff  and the 

concentrated force ( )0P =ϕζ . 

Using the principle of virtual work, it is found that the pre-buckling 
equilibrium is governed by equations [9] 

,0NMN
ds

dM
ds
d,0MN

ds
dM1

ds
dN

o
o

o
o

oo
=

ρ
−












ψ







ρ

+−=











ψ







ρ

+−
ρ

+ ηη                              (7) 

In the sequel, some terms are dropped, i.e., 0kkff
rtn ==== γγ . So the pinned-pinned arch is subject to a concentrated 

load only. Recalling relations (1)-(3), the above equilibrium equations become  
,constantm =ε                                                                                      (8) 

( ) m
2

ooo
2

o
2)2(

o
2)4(

o m1,/wW,1WW12W ε−=χρ=−χ=χ+−χ++                                    (9) 
which are comparable to the equations published in [4]. The post-buckling equilibrium is given by [9]  
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or equivalently, in terms of the kinematical quantities this set simplifies to  
,constantbm =ε                                                                                    (11) 
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4. SOLUTION FOR THE PRE-BUCKLING STATE  
Because all the geometry, the loading and the support conditions are 
symmetric to )0( =ϕζ , only a half-arch is modelled – see Figure 3. The 
general solution satisfying equilibrium equation (9) is sought on the right 
half of the arch in the form  
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The integration constants iA  can be determined by utilizing the 
boundary conditions gathered in Table 1. At the right support the 
displacement and the bending moment are zero. At the crown point the 
rotation is zero and there is a jump in the shear force distribution with 
magnitude 2/Pζ . Altogether, there are four unknowns and four equations in a linear system. Closed-form solutions are 

possible. With the normal displacement in hand, the rotation can also be calculated recalling Eq. (1). Since the axial strain 
is constant on the centroidal axis – see Eq. (8) – one can write 
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where )I2/()P( e
2
o ηζ ϑρ−=P  is a dimensionless load. Constants 1I , 2I , 3I  can be expressed in closed form. 

Table 1. Pre-buckling boundary conditions 
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Figure 2: One dimensional model 

 
Figure 3: Half-arch model in the pre-buckling state 



 ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

Tome XVII [2019]  |  Fascicule 2 [May] 

27 | F a s c i c u l e 2  

5. SOLUTIONS FOR THE BUCKLED EQUILIBRIUM STATE  
The general solution of equation (12) takes the form  
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while, if the increment mbε  is zero, it simplifies to  
.D,C;cosDsinDsinDcosD)(W ii4321ob R∈χϕ+χϕ+ϕ+ϕ=ϕ                                 (16) 

After buckling, every physical quantity is continuous through the interval [ ]ϑϑ−∈ϕ ;  because there is no increment in 
the loading. 
Possibly, there is symmetric (or limit point) and antisymmetric (or bifurcation) buckling. If the buckled arch shape is 
[antisymmetric] (symmetric) then [ 0mb =ε ] ( 0mb ≠ε ). These possibilities are shown on the [left](right) side in Figure 4. 
The continuous line represents the centroidal axis of the arch in the initial configuration, the dashed line is the pre-buckling 
shape while the dotted line is the buckled shape. 

 
Figure 4: Possible pre-buckling and buckled arch shapes 

First let us deal with bifurcation buckling. As all fields are continuous, now the whole arch is considered, consequently the 
displacement and the bending moment are zero at the end supports. After substituting solution (16) into the boundary 
conditions (BCs) in Table 2, a homogeneous system of linear equations is found for which nontrivial solution exists if the 
determinant of the coefficient matrix is set to zero:  
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Recalling the relation m
2 m1 ε−=χ  the lowest physically possible solution is ϑπ=χ / , thus  
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is the lowest (critical) strain.  
Table 2. Boundary conditions for bifurcation buckling 
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When dealing with limit point buckling, it is again easier to consider only the right half of the arch. The boundary conditions 
are presented in Table 3. Upon substitution of solution (15) into the boundary conditions, an inhomogeneous system of 
equations is found which can be solved in a closed form. With obW in hand, the rotation increment is )1(

obbo W−=ψ η , thus, 

the constant strain increment is  
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Observe that )1(
oo W−=ψ η  is an odd function of ϕ , consequently if obW  is an odd function of ϕ  then the above integral 

indeed vanishes for bifurcation buckling: 0mb =ε . Otherwise – practically if obW  is an even function in ϕ  – mbε  is a 
nonzero constant. 

Table 3. Boundary and continuity conditions for limit-point buckling 
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Substituting now all the previously determined kinematical quantities into Eq. (19), then performing the integration and 
simplifying by the constant increment mbε , it is found that  
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Here each of the constants iJ  can be expressed in a closed form [9]. 
To find the critical load for bifurcation buckling, the critical strain (18) should 
be substituted to (14). For limit point buckling, nonlinear equations (14) and 
(20) have to be solved simultaneously for the two unknowns: critical strain and 
critical load. 
6. THE EFFECT OF MATERIAL COMPOSITION ON THE BUCKLING LOAD 
It is now investigated how heterogeneity can affect the buckling load of bi-
layered arches with rectangular cross-section, given that only the material 
composition changes -- the overall geometry remains unchanged. As can be 
seen from Figure 5, the upper layer has Young's modulus 1E  and height 1b . 
The height is a parameter: ]b,0[b1∈ . When 0b1 = , the arch is homogeneous 
with Young's modulus 2E . In this case, the heterogeneity parameter is always 
noted by homm  and the radius of the E -weighted centroidal axis is homoρ . If 

bb1 = , the homogeneous cross-section has Young's modulus 1E . For any 
other (and obviously heterogeneous) distributions, the notations hetm  and 

hetoρ  are used. 

Recalling (4)3 it is intended to find how the ratio  
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is related to the material distribution. It turns out that this fraction is a function of the quotients b/oρ , b/b1  and 12 E/E  
for this simple rectangular cross-section. The first, and otherwise dominant term on the right side of the former expression 
depends only on the ratios 12 E/E  and b/b1  -- see the definitions (3)-(4). Some solutions are plotted on Figure 6. On the 
account of heterogeneity, up to a %55  difference can be experienced when 5E/E 12 = . It is also clear that when 

5.0b/b 1 = , the related curves intersect each other and the maxima of these are also the same. It means that the plotted 
ratio is obviously independent of whether the upper or the lower layer has greater Young's modulus. The quotient 12 E/E  
only affects at what rate of 1b/b  the maximum is reached. 

. 
Figure 6: Variation of some material and geometrical parameters 

The second term in (21) further depends on the ratio b/ohomρ . For the values 50,10  and 100 , the results are plotted in 

Figure 7. It can be seen that this term has a much less considerable effect -- at most %4± , when 10b/o =ρ hom . For the 

other two selected ratios it is always less than %1 . So for most geometries and material distributions the ratio 
2

oo )/( homhet ρρ  can be considered to be 1  with a good accuracy. 

To sum up, the ratio homhet m/m  is always the product of the previous two matching figures. This quotient for 
10b/o =ρ hom  is plotted in Figure 8. The maximum value is a considerable 1.589. 

 
Figure 5: Bi-layered rectangular cross-section 
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Figure 7: Variation of some typical parameters  

 
Figure 8: Possible values for parameter m for various distributions 

 
Figure 9: Change in the lowest buckling load due to various parameters 
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Let us see now tackle some numerical examples. A circular arch with 4E/E 12 =  is chosen. The following homm  values 

are selected: { 6543 10;100008.1;1008.1;102.1 ⋅⋅⋅ }. It is intended to find how heterogeneity affects the critical load 
through the variation of the parameter m . Investigations are carried out until the maxima of the parameter hetm  is 
reached, while gradually increasing the ratio b/b1  -- see the preceding figures. All the results are shown graphically in 
Figure 9. For every selected included angle only the dominant buckling mode (either bifurcation or limit-point) is 
evaluated. When the buckled arch shape is symmetric, the corresponding curve is dashed. When it is antisymmetric (it is 
the more general for pinned supports), then the curve is continuous.  
7. CONCLUSIONS 
Overall, it can concluded that heterogeneity has a really considerable effect on the buckling load, independently of the 
magnitude of the selected m  parameter values. This can be up to %50  for antisymmetric case and %41  for symmetric 
buckling. It is also a conclusion that, the semi-vertex angle ϑ  does not really have an impact on the plotted ratios: the 
related curves usually coincide in the majority of the interval. On Figure 9, it can as well be observed that increasing the 
value of homm results a slight increase in the maxima of the ratio homhet m/m measured along the abscissa. 
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