
A NNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

Tome XVII [2019]  |  Fascicule 2 [May] 

95 | F a s c i c u l e 2  

 
1.Prachi JAYASWAL, 2,Anant PRASAD 

 

HYBRID LUMP-INTEGRAL MODEL FOR THE FREEZING AND MELTING OF 
A BATH MATERIAL ONTO A HIGH-MELTING TEMPERATURE PLATE 
ADDITIVE OF NEGLIGIBLE THERMAL RESISTANCE 
 
1. National Institute of Technology Jamshedpur, Metallurgical and Materials Engineering, INDIA 
2. National Institute of Technology Jamshedpur, Mechanical Engineering, INDIA 
 

Abstract: Reduction in the time of unavoidable freezing and melting of the bath material onto an additive that occurs as soon 
as it is immersed in the hot metal bath during the  melt preparation of desired composition for manufacture of steel and cast 
iron of different grades, is essential in order to decrease their production time, cost and environmental impact for global 
competitiveness. With this objective, a hybrid non-dimensional lump-integral model is devised for this event of freezing and 
melting of the bath material around a high melting temperature plate additive of negligible thermal resistance. It exhibits that 
this event is regulated by  non-dimensional independent parameters, the modified Conduction factor,Cofm and the Stefan 
number, Stb. The series solutions for short times and the numerical solutions for all times are found. It is predicted that the total 
time for such an event decreases with decrease in Cofm, but  for a given Cofm, it remains the same for all Stb investigated. Moreover, 
there is a startling feature of the total time of freezing and melting, τt , equal the modified Conduction factor, Cofm . If the bath is 
at the freezing temperature of the bath material, only freezing occurs. Here, the maximum frozen layer thickness, ξmax , becomes 

equal to �1 + 1
Stb
�. 
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1. INTRODUCTION 
Due to global aggressive market competition for steel and cast iron of different grades, steel makers need to manufacture 
them at low cost, with reduced energy consumption and high productivity and without degrading their quality and 
impacting adversely the environment. To produce them, their melts are first prepared by dunking and assimilating the 
additives in hot metal bath and then treating by passing them through designated metallurgical processes route. The time 
taken for this is called production time, which needs to be reduced for increasing their productivity but without altering 
processes involved for global competitiveness. Here, the undesirable freezing and melting of the bath material onto 
additive soon after its plunging in the bath occurs during the melt preparation for their production. It is due to the high 
temperature gradient developed on the additive side resulting in requirement of conductive heat far greater than the 
available bath convective heat. The excess conductive heat is balanced by the latent heat of fusion generated from the 
freezing of the bath material onto the additive. Elapsing time reduces the additive side temperature gradient and the 
associated conductive heat till this heat equalises the convective heat of the bath. At this instant, the growth of the frozen 
layer ceases. After this time, conductive heat becomes less than the bath convective heat permitting the deficient 
conductive heat to be balanced by less convective heat. The excess convective heat is utilized in melting the frozen layer 
till it completely melts, exposing the additive at a raised temperature. As this undesirable happening is dependent upon 
the temperature and thermo-physical properties of the additive-bath system, the bath condition, geometry, shape and 
size of the additive; control of one or several of them can essentially decrease its time duration resulting in reducing the 
production time and increasing the productivity. 
In view of the above facts, the current study concerns the freezing and melting of the bath material onto a high-melting 
temperature plate additive of negligible thermal resistance as compared with that of the bath. A hybrid non-dimensional 
lump-integral model for this event is developed. It exhibits the freezing and melting as functions of non-dimensional 
independent parameters, the modified Conduction factor, Cofm, related to bath convection and the phase-change 
parameter of the bath material, the Stefan number, Stb, and gives series solutions for short times and numerical solutions 
for all times for the freezing and melting and the associated build-up of the temperature in the additive. Their graphical 
representations indicate the startling features of the total time of the freezing and melting equal to the modified 
Conduction factor, Cofm, for a certain Stefan number, Stb, and; for a prescribed Cofm, this total time is the same for all Stb 
considered. 
This investigation seldom appears in the literature. However, the freezing and melting of the bath material onto high 
melting temperature plate[1], cylindrical [2-5] and spherical [6-11] additives was studied when their thermal resistance 
was comparable with that of the bath. It was also investigated for them [12-14] when the thermal resistance of the frozen 
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layer developed around them was negligible with respect to thermal resistance of these additives. Their solutions were in 
closed-forms. This situation was further investigated when the additive was a low-melting temperature cylindrical additive 
[15]. Here also, its solution was in closed-form. The effect of temperature dependent heat capacity on the plate additive 
was also examined on the freezing and melting of the bath material onto such a plate, when the bath was with [16] and 
without [17] agitation. They yielded the solutions in closed-forms. The instant interface temperature attained between the 
additive and the freezing layer at the time of dunking the additive in the bath, called θe at  τ = 0+, influencing the 
development of the frozen layer was also found for high-melting temperature plate additive [18] and high [19] and low 
[20] melting temperatures cylindrical additive in closed-form. 
2. MATHEMATICAL MODEL 
Consider a thin plate additive of semi-thickness ‘b’, initially at a temperature, Tai , less than its melting temperature, Tam .It 
is dunked in a hot melt bath maintained at a temperature, Tb, greater than the freezing temperature of bath material, Tbm. 
Immediately, on the surface of the plate additive , freezing begins, the additive gets heated and the interface formed 
between the plate surface and the freezing layer attains an equilibrium temperature, Te , which lies between the initial 
temperature of the additive and the freezing temperature of the bath material.  

 
Figure 1: Schematic diagram of freezing and melting of bath material onto a high-melting temperature plate additive of negligible 

thermal resistance. 
Moreover, the plate additive-bath system establishes a temperature field, Figure 1, Tb>Tbm>Te>Tai.  As the time progresses, 
the frozen layer grows in thickness to reach a maximum value and then melts completely  leaving the additive at an 
elevated temperature. 
The additive is assumed not to react with the bath material and the freezing and melting events along with heating of the 
additive is regulated by transient one-dimensional heat conduction. The integral form of non-dimensional heat 
conduction equation controlling the freezing and melting can be cast as  

d
dτ
�∫ θbf dξbf

ξbf
Cr � − �θbf �  

ξbf =ξbm
� dξbm

dτ
+ �θbf �  

ξbf =Cr�
dCr
dτ

=   ∂θbf

∂ξbf 
�    
ξbf =ξbm

−  ∂θbf

∂ξbf 
�   
ξbf =Cr

  (1) 

Its related initial and boundary conditions are 
ξbf = Cr,     θbf = θb ,   τ = 0      (2)  

ξbf = Cr,    θbf = θe   ,    τ > 0                   (3) 
  ∂θbf 

∂ξbf 
= Bim(θb − 1) + 1

Stb

dξbm
dτ

= 1
Cofm

+ 1
Stb

dξbm
dτ

;   ξbf = ξbm , θbf = 1,    τ > 0                                      (4) 

 The additive plate is of a high-melting temperature material and its thermal resistance is negligible with respect to 
convective thermal resistance of the bath and the conductive thermal resistance of the growing frozen layer. This feature 
sets up a uniform temperature in the entire volume of the plate which is equal to the contact interface temperature, θe , 
between the additive and the frozen layer, making the additive act as a lump. 
Applying an energy balance to this lump, the heat conducted to the lump from the frozen layer through the contact 
interface and the increase in the thermal energy of the lump leads to:  

dθe
dτ

= −qn
B

      (5) 
It is subjected to initial condition 

θe = 0, τ = 0        (6) 
The interface coupling conditions between the additive and the frozen layer can be written as 

∂θbf
∂ξbf

= −qn
B

 , θa = θbf = θe ,ξbf = Cr ,   ξa = 1;    τ > 0         (7) 
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Note that the equations (1) to (7) recognize as the hybrid lump-integral model of the current problem. These equations 
are written on the assumptions of the thermo-physical properties of the additive-bath system uniform but different. The 
additive behaves as a lump whereas the frozen layer acts as an integral system in the direction of its growth. The equation 
(7) assumes the plate is in perfect contact with the frozen layer, with no interfacial resistance between them. Such 
assumptions were taken in the recent past investigations [1, 6, 12-13, 19-21] for the freezing and melting of the bath 
material onto the plate, cylindrical and spherical additives, giving realistic and reliable results. This non-dimensional model 
indicates the dependence of this problem upon independent non-dimensional parameters, the bath convection, 
represented by the modified Conduction factor, Cofm; the phase-change parameter of the bath material, Stb; the property-
ratio of the additive-bath system, B and the heat capacity ratio, Cr. 
3. SOLUTIONS 
The hybrid lump-integral model in non-dimensional form just devised for the current problem indicates that it is non-
linear due to presence of moving boundary of the frozen layer, equation (4) and coupled due to conjugating conditions, 
equation (7). They forbid its closed-form solution, applying available exact methods of the literature. In such a situation, 
alternative semi-analytical methods need to be sought. One of them, known as the integral method, that gave closed-
form expression associated with freezing and melting, freezing or melting in the past investigations and reduced similar 
other problems to initial value problems is employed. Here, the governing equation for the frozen layer has already been 
expressed in the integral format; equation (1). It is reduced to 

d
dτ
�∫ θbfdξbf

ξbf
Cr � − dξbm

dτ
= ∂θbf

∂ξbf
�  
ξbf =ξbm

−
 

∂θbf
∂ξbf

�  
ξbf =Cr

;  Cr ≤ ξbf  ≤ ξbm; τ > 0      (8)      

when equations (3) and (4) are substituted. 
To solve this equation, the prior knowledge of temperature field in the frozen layer is required. A linear temperature 
distribution which satisfies equations (3) and (4) is assumed. 

θbf = θe + (1 − θe) (ξbf−Cr)
(ξbm−Cr)

     (9) 

Such a profile is justified because it yielded accurate results for the phase-change problems [1, 18-19, 22] in previous 
investigations. Combination of equations (8) and (9) results in 

d
dτ
�(1+θe)(ξbm−Cr)

2
� − dξbm

dτ
=  ∂θbf

∂ξbf
�  
ξbf =ξbm

− (1−θe)
(ξbm−Cr)    (10) 

It is changed to 
d
dτ
�(1+θe)(ξbm−Cr)

2
� − dξbm

dτ
= 1

Cofm
+ 1

Stb

dξbm
dτ

− (1−θe)
(ξbm−Cr)

      (11) 

once, the boundary condition, equation (4) is employed. Substitution of equations (7) and (10), makes equation (5)  
dθe
dτ

= (1−θe)
(ξbm−Cr)

                                                                                    (12) 

when equation (9) is used. 
The governing equation for the frozen layer, equation (11) and that of the additive, equation (12) are coupled due to the 
appearance of θe in them. For obtaining solutions, they are arranged in standard format of simultaneous first order ordinary 
differential equations in time τ. Here, using equation (12), equation (11) can be written as 

ξCofm(1 + θe − 2Stbm) dξ
dτ

= 2ξ − (1 − θe)(2 + ξ)Cofm      (13) 
whereas, equation (12) takes the following format  

ξ dθe
dτ

= 1 − θe                       (14) 

Here, ξ = ξbm  − Cr and Stbm = �1 + 1
Stb
�. 

Equations (13) and (14) form an initial value problem with the initial conditions, ξbm  −  Cr = ξ =  0 and  θe  = 0  at 
time τ = 0. Their examination indicate  that they do not lead to closed-form solutions nor their solutions are initiated 
employing the standard fourth order Runge-Kutta method , owing to the appearance of infinity at the initial conditions. 
To overcome such a difficulty, the series solutions for small times are found. From these, starting values of ξ and θe in the 
neighborhood of τ →0 (τ = 10-4) are obtained. Using these, the Runge-Kutta method is now capable of providing 
numerical values for ξ and θe for all subsequent times. 
 Series solutions for small times 
In order to find series solutions for small times that lie within the neighborhood of initial time τ=0, (τ=10-4) , the 
following series solutions are taken: 

 ξ = ∑ ain
i=1 τi/2                     (15)            

θe = ∑ bin
i=1 τi/2    i=1, 2, 3, …, n          (16) 

They fulfill the initial conditions, ξ = 0,   θe = 0 at time  τ = 0. To find the higher order coefficients of τi/2 of equations 
(15) and (16), they are substituted in equations (13) and (14). 
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Using MATLAB, the coefficients of higher order of τi/2 become respectively: 

 a1 = ±� Stb
Stb+2

;  a2 = 4[(Cofm−1)Stb−Cofm]
3Cofm(Stb+2)

;  b1 = ±�Stb+2
Stb

 ;  b2 = (2−5Cofm)Stb−4Cofm
6CofmStb

      (17) 

Higher order terms of the series above i=2 are not considered due to their negligible effects on  ξ and θe. 
 Numerical solutions for all times 
As described, the starting values of ξ and θein the vicinity of    τ → 0 (τ = 10−4) are estimated from the above 
equations for small times. These are then applied to Runge-Kutta method to calculate numerical values of ξ and θe for all 
times.  
As the time rate of increase in temperature of additive is faster than the time rate of development of the frozen layer with 
its subsequent melting, the additive attains the melting temperature of the bath material before the frozen layer 
completely melts. In such a situation, the temperature of the additive and the temperature of the melting front of the 
remaining frozen layer become at the melting temperature of the bath material. This permits the entire remaining frozen 
layer and the additive along with the interface between the additive and the frozen layer to be at the melting temperature 
of the bath material. Due to this, the bath convective heat only melts the remaining frozen layer, which is governed by 

�−1
Stb
� dξ
dτ

= Bim(θb − 1) = 1
BCof

= 1
Cofm

     (18)                

Once  θe=1 is substituted in equation (13), it readily gives a closed-form solution, 
ξ = ξr −

Stb
Cofm

(τ − τr)      (19) 

satisfying the condition ξ = ξr  at τ = τr where, ξr represents the thickness of the remaining frozen layer at time τ = τr 
of the start of the above happening. It provides the total time of freezing and melting, once the frozen layer disappears  
(ξ = 0). 

τt = Cofm
Stb

ξr + τr               (20) 

4. VALIDITY 
In absence of freezing and melting of the bath material onto the plate additive, the bath convective heat only heats the 
additive, transforming the current problem to the transient heat conduction in the additive subjected to convective heat 

injection. Here, the term related to freezing and melting,    1
Stb

dξbm
dτ

    vanishes;    ξbm = Cr  and    (1−θe)
(ξbm−Cr)

=    dθe
dτ

 

{equation (12)} and the moving front coincides with the surface of the additive. Applying them, equation (11) becomes 
dθe
dτ

= 1
Cofm

= Bim(θb − 1)          (21) 

It is transformed to  
dθe
dτh

= Bi(θb − θe)                (22) 

Here,   τh = τ/B   and Bi = BBim 
Equation (22) provides the closed-form solution satisfying the initial conditions θe = 0 at  τh = 0 

1 − θe
θb
−= e−Biτh                (23) 

It is exactly the same as reported in the literature [23-25] validating the present problem. 
5. SPECIAL CASE: ONLY FREEZING 
When the bath temperature is close to the freezing temperature of the bath material   (Tb → Tbm), the convective heat 
of the bath becomes zero {h (Tb-Tbm) = 0} and in turn Cofm=∞. Its substitution along with the use of equation (14) makes 
equation (11)  

d
dτ
�(1+θe)(ξ)

2
− (Stbm)ξ+ θe� = 0    (24) 

where, ξ = ξbm  − Cr and Stbm = �1 + 1
Stb
� 

It gives a closed-form solution  
(1+θe)(ξ)

2
− (Stbm)ξ + θe = 0                 (25) 

once, ξ = 0 and θe = 0 at τ = 0. 
It leads to 

θe = ξ(2Stbm−1)
(ξ+2)

      (26) 

In case the latent heat of fusion generated due to freezing of the bath material which is conducted to the additive, raises 
its interface temperature to the freezing temperature of the bath material(θe = 1), no further freezing of the bath 
material takes place. This results in the development of maximum possible frozen layer thickness, ξmax  onto the additive. 
Applying this, equation (26) gives 

ξmax(2Stbm − 1) = (ξmax + 2)                   (27) 
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It leads to 
ξmax = Stbm          (28) 

It is noted that if the bath temperature, Tb > Tbm, the growth of the maximum thickness of the frozen layer is always 
smaller than that found from equation (28). It is due to the part of the latent heat of fusion supplied to the additive being 
replaced by the bath convective heat. 
Equation (28) can be also derived directly by applying an energy balance between the latent heat of fusion released by 
freezing of the bath material around the plate additive and the absorption of this heat to raise the temperature of the 
additive to the freezing of the bath material.  

2Asρb(qmax – b)L = 2AsρabCpa(Tbm − Tai)                  (29)               
In non-dimensional form, it is exactly the same as that of equation (28). 
6. RESULTS AND DISCUSSIONS 
A non-dimensional lump-integral model is evolved for the reduction in time of occurrence of unavoidable freezing and 
melting of the bath material onto a high-melting temperature plate additive of negligible thermal resistance during initial 
period of the melt preparation of requisite composition by assimilating this plate additive to manufacture steel and cast 
iron. This reduction decreases the production time and increases the productivity for global competitiveness. The model 
reveals that this event is dependent upon the bath condition represented by modified conduction factor, Cofm, a product 
of the property-ratio of the additive-bath system ‘B’ and the conduction factor ‘Cof’  (Cofm=BCof)  and; the phase change 
parameter of the bath material, denoted by the Stefan number, Stb. The latter is the ratio of the sensible heat and latent 
heat of the bath material. Its high value is representative of low latent heat of fusion, due to which, for the same bath 
convective heat, the frozen layer developed becomes of larger thickness. A low value of the property-ratio increases the 
driving bath thermal force to transfer large heat to the additive. The conduction factor, Cof ,  the ratio of the heat conducted 
to the plate additive, ka(Tbm-Tai)/b, which arises owing to the temperature difference of the freezing temperature of the 
bath material and the initial temperature of the additive, and; the convective heat of the bath, h (Tb-Tbm). It ranges between 
0 and infinity. Infinity denotes the bath to be at the freezing temperature of the bath material leading to non-availability 
of the convective heat from the bath. This results in only freezing of the bath material onto the additive. Zero corresponds 
to the additive heated at the freezing temperature of the bath material before it is immersed in the bath. It causes no 
conductive heat transfer to the additive, resulting in no frozen layer of the bath material onto it. 
Shown in Figure 2 and Figure 4 are behavior of freezing and melting, ξ and the interface temperature θe. In each figure, 
the freezing and melting is parabolic whereas, the temperature θe rises quickly to attain the freezing temperature of bath 
material, θe=1 and then remains at this temperature until the frozen layer completely melts. Here, the total time, τt , is the 
time from beginning of the freezing, with the growth of the frozen layer to its  maximum value,  and its  melting , whereas, 
τmax, is the time of development of the maximum thickness of the frozen layer represented by the time needed to grow 
this thickness. The difference between the total time and the time of the maximum growth of the frozen layer provides 
the time of melting, τm=τt-τmax. Moreover, an early part of any figure, representing freezing, is reached quickly the maximum 
frozen thickness, whereas its melting is slow with its later portion exhibiting a linear behavior with time. The later behavior 
is the result of the interface temperature, θe rapidly rising to the freezing temperature of the bath material before the 
complete melting of the frozen layer. In this situation, the remaining frozen layer including the interface temperature and 
the freezing front becomes at the freezing temperature of the bath material. This results in not allowing the convective 
heat to be absorbed by the frozen layer, rather, the convective heat only melts the frozen layer, which is provided by 
equation (20). It gives a linear relation between melting of the frozen layer and time. 
 Effect of modified conduction factor, Cofm 
Displayed in Figure 2 are the time dependent freezing and melting and associated temperature rise for a prescribed value 
of the phase-change parameter, Stb. The modified conduction factor is assumed to be a parameter. For each of Cofm , the 
behaviour of freezing and melting, ξ , and the interface temperature, θe , are similar to those described in the above section. 
However, increasing Cofm, increases the total time of freezing and melting, the maximum frozen layer thickness and its time 
of formation. The interface temperature, θe , rises with a  faster rate, to attain the freezing temperature, θe=1, permitting 
not to melt completely the developed frozen layer. As stated earlier, the remaining frozen layer becomes at freezing 
temperature, θe=1. This trait is expected due to the heat conducted to the additive is the sum of the convective heat and 
the latent heat of the fusion generated due to freezing of the bath material onto the additive. In earlier investigations 
also,[8, 26] , this behavior was found. Increasing Cofm , decreases the convective heat, due to which more latent heat of 
fusion is required to be released which is affected by the growth of the larger thickness of the frozen layer.  
Figure 3 relates the growth of the maximum frozen layer thickness, ξmax , its time of formation , τmax ,  and the total time of 
freezing and melting, τt, with modified Conduction factor, Cofm , for a prescribed Stefan number, Stb. It is found that for 
smaller Cofm (Cofm<100) ,  ξmax and τmax  grow faster and as Cofm increases beyond 100, they increase insignificantly.However 
their total time of freezing increaes almost linearly with increase in Cofm. 
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Figure 2 :Time variant freezing and melting,𝛏𝛏, and the 

interface temperature, θe ,for various values of modified 
Conduction factor, Cofm, for a given value of the Stefan 

number, Stb. 

Figure 3 : Modified Conduction factor, Cofm, dependent maximum 
frozen layer thickness, ξmax , its growth time ,τmax , and total time of 

freezing with its subsequent melting ,τt , for  a specified value of 
Stefan number, Stb. 

 Effect of Stefan number, Stb 
Indicated in the Figure 4 are the freezing and melting of bath material and the associated interface temperature, θe with 
respect to time for a given modified Conduction factor, for different Stefan number, Stb. It is observed that for a given Stb 
the freezing and melting assumes a parabolic behaviour. Its apex represents the development of the maximum frozen 
layer thickness whereas time taken for this development is the time for its growth. Beyond the maximum frozen layer 
thickness the rest of the parabolic graph represents the melting of the frozen layer developed.This behaviour is same for 
all the Stb taken in this study, however, increasing Stb increases the size of the parabola, the maximum frozen layer thickness 
and the time taken to grow this thickness. But the apex of the parabola moves towards the greater time. The Figure 4 also 
provides a startling exhibit for taking the same total time, equal to the modified Conduction factor (τt=Cofm=100), for the 
freezing and melting irrespective of the change in the Stefan number from 1 to 5. 
Variation of maximum frozen layer thickness, ξmax, its development time, τmax, and the total time of freezing and melting, τt  
at a prescribed value of Cofm =100 are displayed in Figure 5 for different Stefan number, Stb. It indicates that although  the 
time taken for the growth of maximum frozen layer thickness is almost linear, the rate of the maximum frozen layer 
thickness developed becomes larger at a greater time. The total time, however, remains the same with its value equal to 
the Cofm, for which the Figure 5 is drawn. 

  
Figure 4:  Time dependent freezing and melting,𝛏𝛏 , and the 

interface temperature, θe , for different Stefan number, Stb for 
a given value of the modified Conduction factor, Cofm  . 

Figure 5: Variation of maximum frozen layer thickness, ξmax, its 
growth time, τmax , and total time of freezing with subsequent 

melting, τt, with Stefan number, Stb, for a specified value of the 
modified Conduction factor, Cofm . 

7. APPLICATION OF CURRENT MODEL TO MANUFACTURING PROCESSES 
The hybrid lump-integral model just presented has yielded closed-form solution for the freezing and melting of the bath 
material onto high-melting temperature plate additives, eah of which is of negligible thermal resistance. This solution is 
employed to foretell the time of freezing and melting of the steel bath material [11] onto the plate additives made of 
different materials, Table 1, used in manufacturing of steel and cast iron of different grades. Here, each of these plate 
additives is of 1mm semi-thickness.The freezing and melting of these materials plotted  in the Figure 6 indicates that 
Chromium additive takes much less time than that of Molybednum for their same size. 
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Table 1.  Thermo-physical Properties of Bath Material : STEEL BATH [11] 
Cpb=0.670kJ/kg°C,ρb=6850kg/m3,kb=35,Tbm=1531°C,  Tb=1600°C,  L=271.97kJ/kg,  h=3500W/m2K, θb=1.03, Stb=3.71 

Thermo-physical properties of high melting temperature plate-shaped solid additive 
of semi-thickness, b=1×10-3m , Tai=25°C 

Non-dimensional 
Parameters 

Additive Tam(°C) CP(kJ/kg°C) ρ(kg/m3) k(W/mK) Bi B Cofm 
V 1910 0.494 5900 35 0.100 1.579 526.33 

Mo 2623 0.251 10200 140.7 0.025 0.446 594.67 
Cr 1830 0.448 7150 69.8 0.050 0.718 478.67 

8. CONCLUSIONS 
A hybrid non-dimensional lump-integral model for the current 
event, stated earlier, is evolved. It is functions of the modified 
Conduction factor, Cofm and the Stefan number, Stb. For short 
times, series solutions for freezing and melting and associated rise 
in temperature are derived, whereas for all times numerical 
solutions for them are obtained. The total time of freezing and 
melting is equal to Cofm (τt=Cofm), for a given Stb, whereas, for a 
given Cofm, this time remains unaltered for all the Stb considered. 
This predicts that for increasing productivity for a given bath 
material, Cofm needs to be decreased and in turn, the bath 
convective heat is to be increased. 
Nomenclature & Greek Letters 
As  Surface area of the additive (m2) 
b        Significant thickness,(m)  
B Property ratio, Cbkb/Caka 
Bi Biot number, hb/kb 
Bim Modified Biot number, (hb/kb)(Caka)/(Cbkb) 
Ca Heat capacity of the additive, ρaCPa, (Jm-3K-1) 
Cb Heat capacity of the bath material, ρbCPb, (Jm-3K-1) 
Cof Conduction factor, (ka/hb)(Tbm-Tai)/(Tb-Tbm) 
Cofm  Modified conduction factor, BCof 

Cpa Specific heat capacity of the additive, (Jkg-1K-1) 
Cpb Specific heat capacity of the bath material, (Jkg-1K-1) 
Cr      Heat capacity ratio of the additive-bath system, Cb/Ca 
H     Convective heat transfer coefficient of the bath, (Js-1m-2K-1) 
ka      Thermal conductivity of the additive, (Js-1m-1K-1) 
kb      Thermal conductivity of the bath material , (Js-1m-1K-1) 
L Latent heat of fusion of the bath material (Jkg-1) 
q Moving frozen layer front measured from the central axis of the additive at any time,(m) 
qa Heat flux injection to the additive (Js-1m-2) 
qn Dimensionless growing frozen layer front at any time t, qab/(ka(Tbm-Tai)) 
Stb Stefan number of the bath material, CPb(Tbm-Tai)/L 
t        Time measured from the initiation of the events , (s) 
Ta Temperature of the additive,(K) 
Tai Initial temperature of the additive,(K) 
Tam Melting temperature of the additive,(K) 
Tb Temperature of the bath, (K) 
Tbf Temperature of the frozen layer at any time, (K) 
Tbm Freezing temperature of the bath material,(K) 
Te Thermal equilibrium temperature at the interface,(K) 
αa  Thermal diffusivity of the additive, ka/Ca, (m2s-1) 
ξbf Dimensionless moving frozen layer  front measured from the central axis of the additive at any   
   time, (Cb/Ca)(q/b) 
ξ Dimensionless moving frozen layer  front measured from interface at any time, ξbf − Cr 
ρa Density of the additive material, (kgm-3) 
ρb Density of the bath material, (kgm-3) 
θa Dimensionless temperature of the additive, (Ta-Tai)/(Tbm-Tai) 
θai Dimensionless initial temperature of the additive, (Tai-Tai)/(Tbm-Tai) 
θam Dimensionless melting temperature of the additive, (Tam-Tai)/(Tbm-Tai) 
θb Dimensionless temperature of the bath, (Tb-Tai)/(Tbm-Tai) 
θbf Dimensionless temperature of the frozen layer at any time,(Tbf-Tai)/(Tbm-Tai) 
θbm Dimensionless freezing temperature of the bath material,(Tbm-Tai)/(Tbm-Tai) 
θe Dimensionless thermal equilibrium temperature at the interface,(Te-Tai)/(Tbm-Tai) 
τ Diensionless time , Bαa t/b2 

 
Figure 6 : Time dependent freezing and melting of steel bath 

material (Stb=3.71) onto the high-melting temperature 
additives often used in steel manufacturing 
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