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Abstract: An analysis of the unsteady–state three–dimensional heat conduction 
analysis of a rectangular plate is carried out by using a classical method. The 
boundary conditions for a temperature field are considered to be a partially 
prescribed temperature on the top face, zero temperature at the bottom face and 
four edges, and no flux at any edges. The intensities of bending moments, resultant 
moments and resultant forces are formulated based on the small–deflection theory 
and the analytical solution for the thermal stress components is obtained based on 
it. Numerical results for thermal stresses are presented. Furthermore, some results 
are derived by means of computational tools are illustrated numerically and 
depicted graphically. 
Keywords: heat conduction, internal heat sources, thin rectangular plate, 
deflection, stresses 
 
 
1. INTRODUCTION 
The theoretical problems of bending of the thin rectangular plate are used 
in a variety of engineering applications. Therefore, some theoretical studies 
concerning the problems of different edges, maybe clamped, simply 
supported, the temperature applied on different edges using different 
methods have been reported so far. The detailed thermal bending of thin 
plates has been stated in Nowinski's highly cited book (1978). Even studies 
on thermal stresses in two–dimensional (2D) or three–dimensional (3D) 
plates have also appeared many times. In this regard, Eslami et al. [1] in his 
book explained how to solve various boundary value problems of one–, 
two–, and three–dimension, and studied thermal stress of various 
structures, and improved the conclusion by numerical methods. Even, 
Misra [2] discussed a relatively simple paper in which upper surface was 
kept at a constant temperature while the lower surface, which is in contact 
with an elastic foundation with curved surface kept thermally insulated. Of 
most recent literature, some authors have undertaken the work on thermal 
stresses, which can be summarised as given below.  
Pachinger et al. [3] analyzed the thermally induced bending of thin 
rectangular plates with one clamped and three simply supported edges are 
studied for a spacewise constant thermal moment in this conclusion. Cheng 
et al. [4] on his paper discussed the analysis on Rectangular Thin Plate (RTP) 
having two opposite edges clamped, one edge simply supported and one 
edge free under temperature disparity is regarded as a superposition of the 
RTP of three simply supported edges and one edge free under temperature 
disparity and the RTP under the bending moment with two opposite edges. 
Zhong and Zhang [5] also investigated the RTP of three simply supported 
edges and one edge free under temperature disparity and the RTP under the 
bending moment with two opposite edges using condition related on small 
deflection theory and superposition principle, with consideration of 
temperature variation that is perpendicular to the surface.  
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Deshmukh et al. [6] furnished a solution to the quasi–static problem of transient thermal bending 
stresses in a plate with the clamped edge using an integral transform. Few authors [7–11] have 
obtained different reports on the thermal bending analysis of the rectangular thin plate for various 
plate supports combinations. In previously referred papers, their objective was to maximize the 
load–carrying capacity of the structural support either by locating the supports or by changing 
stiffness. Hence, to the best of authors’ knowledge, there exists scarce concentration on this topic 
of research in which internal heat source is taken into consideration the thermal bending moments. 
Things get further complicated when there exists a combination of internal heat generation and 
sectional heat supply is impacted on the body. Owing to the lack of research in this field, the 
authors have motived to conduct this study. In this paper, the realistic problem of a thin 
rectangular with an internal source in consideration subjected to prescribed surface temperature 
is studied. The theoretical calculation has been considered using the dimensional parameter, 
whereas graphical calculations are carried out using the dimensionless parameter. The success of 
this novel research mainly lies on the new mathematical procedures which present a much more 
straightforward approach for optimization of the design in terms of material usage and 
performance in engineering problem, particularly in the determination of thermoelastic behaviour 
in plate engaged as the foundation of pressure vessels, furnaces, etc. 
2. FORMULATION OF THE PROBLEM – TEMPERATURE DISTRIBUTION 
Let us consider the rectangular plate occupying the space 

/ 2 / 2, / 2 / 2, / 2 / 2a x a b y b h z h− ≤ ≤ − ≤ ≤ − ≤ ≤                                                      (1) 
and its physical configuration in Cartesian coordinates can be shown in Figure 1 as   
 

 
Figure 1. Schematic geometry of thick rectangular plate 

 

We assume the expression for the unsteady temperature ( , , , )T x y z t  as 

2 2( , , , ) ( / 2) {[ ( ) cos cos ( / 2)] }
1 0

T x y z t z h f t x y z z h x yrs r s
r s

α β
∞ ∞

= + − + +∑ ∑
= =

                             (2) 

in which 
/ ( 1,3,5,...),r a rrα π= =                                                                       (3) 

2 / ( 0,2,4...),s b ssβ π= =                                                                       (4) 

and ( )f trs can be determined from the governing heat conduction equation. 
The governing equation for unsteady–state heat conduction in isotropic solids is given as 

2 2 2 1Q2 2 2
T T T T

tx y z κ
∂ ∂ ∂ ∂

+ + + =
∂∂ ∂ ∂

                                                                     (5) 

subjected to a partially distributed sectional heat supply on the top face 
( , )/2

0
T f x yz h

t
==

=
                                                                            (6) 

in which the prescribed surface temperature on top face is taken as 
( ) ( ) for / 2and / 20 0 0( , )

0 for / 2 or / 2
T x x y y x c y d

f x y
x c y d

δ δ − − < <=  > >
                                            (7) 
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where 0T  being a constant temperature at 0t = , thermal diffusivity is denoted as ,/ Cρλκ =  λ  
being the thermal conductivity of the material, ρ  is the density and C is the calorific capacity, 
which is assumed to be temperature–independent, respectively. The point impulsive sectional heat 
supply is represented as ( ) ( )0 0x x y yδ δ− −  for / 2 / 2,0c x c− < <  / 2 / 20d x d− < <  and the 

internal heat generation expressed in algebraic form as 2 22[( 3 ) ]Q h z x y= + − − .  
Since boundary condition of all the four edges (i.e. / 2x a= ±  and y b= ±  ) are at zero temperature 
with arguments given in Eqs. (3)–(4) must automatically satisfy. Now it is enough for the analysis 
to satisfy boundary condition (7) and another boundary condition at bottom face (i.e. / 2z h= − ) 
having zero temperature.  
Putting Eqs. (3) in (5) results in 

( ) 2 2( ) ( )f t f tr st
κ α β∂

= − +
∂

                                                           (8) 

The above equation on integrating gives 
2 2( )( ) tr sf t ers

κ α βµ − +=                                                            (9) 

in which rsµ  is the constant to be determined from the nature of temperature prescribed on the 
upper face.  
Using Eq. (7) and imposing boundary condition (6) on temperature change Eq. (2), we obtain 

2 2 2( ) ( ) [ ( / 2) 1] cos cos0 0 0
1 0

T x x y y h x y h x yrs r s
r s

δ δ µ α β
∞ ∞

− − = − + ∑ ∑
= =

                (10) 

On expanding ( , )f x y  of Eq. (7) into a Fourier series, one obtains 
4 0

2 2 2[ 1 ( / 2)]0 0

T
rs

cdh x y h
µ =

+ −
                                                 (11) 

Hence the required temperature distribution 
2 2( ) 2 2( / 2) [ cos cos ( / 2)]

1 0
( , , , ) for / 2and / 2

0 for / 2 or / 2

tr sz h e x y z z h x yrs r s
r s

T x y z t x c y d

x c y d

κ α βµ α β
∞ ∞ − ++ − + +∑ ∑

 = =
= < <


 > >

       (12) 

The above result gives thermally induced resultant moment as 
/2 ( , , , )/2

2 2( )4 6[( / 24) cos cos ( / 80)]
1 0

hM E zT x y z t dzT h

tr sE h e x y hrs r s
r s

α

κ α βα µ α β

= ∫−
∞ ∞ − += −∑ ∑
= =

                     (13) 

and the resultant force as 
/2 ( , , , )/2

2 2( )3 5 2 2[( /12) cos cos ( / 30)]
1 0

hN E T x y z t dzT h

tr sE h e x y h h x yrs r s
r s

α

κ α βα µ α β

= ∫−
∞ ∞ − += − +∑ ∑
= =

                 (14) 

in which α  and E represents the coefficient of linear thermal expansion and Young’s Modulus of 
the material of the plate, respectively.     
The equation of equilibrium for the normal deflection in the absence of external load can be given 
as  

224 1
1 2 (1 )

MTD h
t

ωω ρ
υ

∇∂
∇ + = −

−∂
                                                           (15) 

and the associated boundary conditions of the plate are given as 
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0, 0, for / 2 / 2and / 2 / 20 0
0, for all in / 2 / 2/2
0, for all in / 2 / 2/2

2 2
0, 02 2(1 ) (1 )

/2 /2

a x a b y bt t t
y b y bx a
x a x ay b

M MT T
D Dx yx a y b

ωω

ω

ω

ω ω
υ υ

∂
= = − ≤ ≤ + − ≤ ≤ + = ∂ = 

= − ≤ ≤ + =± 
= − ≤ ≤ +=± 


∂ ∂ + = + = − −∂ ∂ =± =± 

                                  (16) 

where ( , , )x y tω  is the normal transverse deflection along z –direction of the midsurface, 2
1∇   

indicates the Laplacian operator, 4
1∇   denotes the bi–harmonic operator, ρ  the density of the 

material, constant υ   denotes the Poisson’s ratio of the disk, D  is the flexural stiffness terms given 

as  3 2/12(1 )D E υ= −   and the inertia loading term is taken as 2 2( / )h tρ ω∂ ∂ . 
Furthermore, the thermal stress components are written in the following form 

1 12 1 1 12
3 31

1 12 1 1 12
3 31

1 12
3

z zN M N M ETxx x x T Th hh h

z zN M N M ETy y T Tyy h hh h
zN Mxy xyzz h h

σ α
υ

σ α
υ

σ

 
= + + + − 

−  
 

= + + + − 
−  

= −

                                         (17) 

in which the resultant bending moments per unit length are given as 
2 2

,2 2 1

2 2
,2 2 1

2
(1 )

MTM Dx
x y

MTM Dy
y x

M Dxy x y

ω ωυ
υ

ω ωυ
υ

ωυ

 ∂ ∂ = − + −
  −∂ ∂ 
 ∂ ∂ = − + −
  −∂ ∂ 

∂
= −

∂ ∂

                                                              (18) 

moreover, resultant forces per unit length are defined as 
2 2 2

, ,2 2
F F FN N Nxyx y x yx y

∂ ∂ ∂
= = = −

∂ ∂∂ ∂
                                                          (19) 

which must satisfy 

0, 0
N N NN xy xy yx

x y x y
∂ ∂ ∂∂

+ = + =
∂ ∂ ∂ ∂

                                                            (20) 

where the stress function F can be obtained from 
4 2
1 1F NT∇ = −∇                                                                             (21) 

The Eqs. (1)–(27) constitutes the mathematical formulation of the problem under consideration. 
3. SOLUTION OF THE PROBLEM 
Firstly, we assume the expression for a transient thermal deflection given in Eq. (15) subjected to 
initial conditions expressed in the first equation of Eq. (16), as 

( , , ) ( ) cos sin
1 0

w x y t t x yrs r s
r s

φ α β
∞ ∞

= ∑ ∑
= =

                                                   (22) 

Inserting the above result represented by Eq. (22) in Eq. (15), we deduce the differential equation 
satisfied by ( )trsφ  as 

2 2 2( ) ( )2 ( ) 02
t trs r st ers rs

t

φ κ α βλ φ λ
∂ − ++ =
∂

                                                     (23) 

in which 
2 2 2( )2 ,D r srs h

α β
λ

ρ
+

=
2 2( ),rs r sγ κ α β= +

2 2(2 5 ) ,0 60(1 )
E h hrs rsα γ µ

λ
υ ρ
−

=
−
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with ( ) ( ) 0t trs rsφ φ′′ = =  at 0t = . 

Applying Laplace transforms to Eq. (23) and using the first equation of Eq. (16), one obtains 

1( ) 0 2( )( )
srs

s s srs rs
φ λ

γ λ

  =  
+ +  

                                                        (24) 

Now, applying inverse Laplace theorem to Eq. (24), one obtains 
2

1( ) 0 2 2 2 2( ) ( )

t trs rse etrs
rs rs rs rs rs rs rs rs

γ λ
φ λ

γ λ γ γ λ λ γ λ

 − − = + + 
− − 

 

                                           (25) 

Hence the thermal deflection can be obtained by replacing Eq. (25) into Eq. (22) as 
2 22 2 ( )( ) / 2 24 ( )1 12 2 2 2 2 2 260 (1 ) ( )1 0

cos sin

tt h r sr s eEh hers r sw
D h hr s r s r s r s

x yr s

κ α βκ α β ρµ α βα κ ρ
υ κα β α β κρ α β κρ

α β

  − +− +∞ ∞ +  = + −∑ ∑   − + + − + − = =    
×

              (26) 

It is prominent from Eqs. (13) and (26) that the related boundaries are given in (16) on 
/ 2, / 2x a y b= ± = ±  are evidently satisfied. Now inserting the above result given in Eq. (26) into 

Eq. (18), then in Eq. (17) taking all resultant forces given in Eq. (19) as zero, we get the desired 
thermal bending stresses as 

4 2 21 2 30 (z / 2) 60 ( 1 )
2 2 2 2 260( 1 ) ( ) ( )1 0

2 2 2 21 ( )( 2 ) / cos2 2 2 2 2( ) ( )
2 2 2 2( )( ) / 2 25 [( 6 ) 12 ]( )(

h E z h x y E
xx

hr s r s r s

h t hr s r sE e xrs r
hr s r s

h t hr s r se h h z r s

α ασ
υ α β α β κρ

α β α β κρ ραµ α
α β α β κρ

κ α β α β κρ ρ α β

∞ ∞ − + + − +
= ∑ ∑

− + + + −= =

 − + + ++ 
+ + − 

+ + +× − − + − + 2 2 )

2 2 2 2( )( ) /2 2 2cos 12 (1 ) ( )

2 2 2 2 2 22 ( ) ( )( 2 ) / 2 2( )

sin

hr s

h t hr s r sy hz es r s

t h t hr s r s r se h e hr s

yr

α β κρ

α β α β κρ ρβ α υ α β

κ α β α β α β κρ ρκρ α β κρ

α


+ −


 + + +× + + +


+ + + +− − + + 



× 



             (27) 

4 2 21 2 30 (z / 2) 60 ( 1 )
2 2 2 2 260( 1 ) ( ) ( )1 0

2 2 2 21 ( )( ) / cos2 2 2 2 2( ) ( )
2 2 2 2( )( ) / 2 25 [( 6 ) 12 ]( )(

h E z h x y E
yy

hr s r s r s

h t hr s r sE e xrs r
hr s r s

h t hr s r se h h z r s

α ασ
υ α β α β κρ

κ α β α β κρ ραµ α
α β α β κρ

κ α β α β κρ ρ α β

∞ ∞ − + + − +
= ∑ ∑

− + + + −= =

 − + + −+ 
+ + − 

+ + +× − − + − + 2 2 )

2 2 2 2( )( ) /2 2 2cos 12 (1 ) ( )

2 2 2 2 2 22 ( ) ( )( ) / 2 2( )

sin

hr s

h t hr s r sy hz es r s

t h t hr s r s r se h e hr s

yr

α β κρ

α β α β κρ ρβ α υ α β

κ α β α β α β κρ ρκρ α β κρ

α


+ −


 + + +× + + +


+ + + +− − + + 



× 



             (28) 



ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 
Tome XVIII [2020]  |  Fascicule 1 [February] 

68 | F a s c i c u l e 1  

2 22 2 ( )( ) /2 2 2( )1 12 2 2 2 2 2 25 ( )1 0

sin cos

tt h r sr sz eEh her rs r szz
h hr s r s r s r s

x yr s

κ α βκ α β ρα µ α βα κ ρσ
κα β α β κρ α β κρ

α β

  − +− +∞ ∞ +  = + −∑ ∑   
+ + − + − = =    

×

         (29) 

4. NUMERICAL RESULTS, DISCUSSION AND REMARKS 
For the sake of simplicity of calculation, we set the functions as 

[ ( / 2)] / , [ ( / 2)] / , [ ( / 2)] / ,
2/ , ( , , , ) ( , , , ) / , /0 0
/ ( , , )

x x a a y y b a z z a

t a T x y z t T x y z t T W W T a
E i j x yij ij t k

τ κ α
σ σ α θ

= − − = − − = − −

= = =

= =



                                    (30) 

Substituting the dimensionless value of Eq. 
(30) in temperature distribution Eq. (12), 
thermal deflection Eq. (26) and in 
components of stresses Eqs. (27)–(29), we 
obtained the desired expressions for our 
numerical discussion.  
The numerical computations have been 
carried out for Aluminum elliptical plate 
with physical parameter as length a =2.5 
m, breadth b = 2 m, height = 0.08 m, and 
reference temperature as 1500C. The 
thermo–mechanical properties are 
considered as modulus of elasticity E = 70 

GPa, Poisson’s ratio υ =  0.35, thermal 
expansion coefficient α =  23×10–6 /0C, 
thermal diffusivity κ =  84.18×10–6 m2s−1 
and thermal conductivity λ =204.2 
Wm−1K−1.  
In order to examine the influence of 
heating on the plate, the numerical 
calculations were performed for all the 
variables, and numerical calculations are 
depicted in the following figures with the 
help of MATHEMATICA software.   
Figs. 2–4 illustrates the numerical results of 
temperature, stresses and the deflection of 
the plate due to interior heat generation 
within the solid, under thermal boundary 
condition that are subjected to a known 
initial surrounding temperature at any 
particular instance.  
In Figures 2(a)–2(c), the dimensionless 
temperature distribution increases along 
( , , )x y z − direction of the plate with 
internal heat supply are depicted. At the 
central part of the length and breadth, 
temperature fluctuation attains maximum 
and it may be due to available 
accumulation of energy of internal heat 
source and hence thermal expansion is 
more at the central part of the plate, giving 
high tensile force, as shown in Figure 2(a). 
Figure 2(b) also shows the variation in the 
temperature profile along ( , , )x y z − direction for various location of thickness and it is observed 

 
Figure 2 (a): Temperature distribution along x –direction 

for different values of .z  

 
Figure 2 (b): Temperature distribution along y –direction 

for different values of .x  

 
Figure 2 (c): Temperature distribution along z –direction 

for different values of .x  
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that nature is similar to that of trend shown 
in Figure 2(a) except the magnitude. Figure 
2(c) illustrates the temperature profile along 
the axial direction for different points along 
x − direction and it is observed that the 
temperature trend increases linearly along 
the z −direction towards the outer edge due 
to the thinness structure.  From the physical 
point of view, the internal heat source in 
combination of sectional heat supply plays a 
role of heat source for the temperature 
distribution if the generation rate ( 0)Q >

 
is 

positive and it acts as a heat sink if the 
generation rate ( 0)Q <  is negative. The 
result agrees with the previous result [12]. 
Figure 2(d) shows the temperature 
distribution in isolines contour plot along 
x y −  plane which shows a combined effect 
of Figure (2a)–(2b) for fixed location along 
the axial direction. 
Figure 3(a) depicts thermal deflection along 
the y −direction at different location of ,x  
and it was observed that the thermal 
deflection gradually increases within the 
rectangular frame due to the available 
internal heat source and sectional supply. 
Figure 3(b) illustrates that the absolute value 
of thermal deflection increases with time for 
the simply–supported edge. Initially, the 
deflection increases gradually, and it attains 
maximum expansion due to the 
accumulation of thermal energy dissipated 
by internal heat generation and point 
impulsive heat supply.  

From Figure 3(c), one can see the thermal 
deflection in isolines contour plot along x  and  
y −  directions at a fixed dimensionless time ,τ   in 
which the darkly shaded portion agrees with the graph plotted in Figure 3(a). The defection in the 
red area near the outer edge shows maximum displacement, maybe due to the internal heat source 
and sectional heat supply, while blue colour area indicates the zero deflection at the outer region 
of the rectangular frame. 

 
Figure 2 (d): Contour plot of temperature distribution 

along x y −  plane for a fixed value of .z  

 
Figure 3 (a): Deflection along y − direction for different 

values of .x  

 
Figure 3 (b): Deflection along time–direction for 

different values of .x  
 

Figure 3 (c): Contour plot of deflection along 
x y −  plane for a fixed value of .τ  
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Figs. 4(a)–4(d) shows the characteristic nature of 
dimensionless thermal stresses in a rectangular 
plate which is impacted by point impulsive heat 
source and having internal heat generation. The 
distribution profile is shown in Figure 4(a) is at 
zero value which gradually decreases towards the 
outer part and attains maximum due to 
accumulation heat energy obtained from the 
external sectional heat supply and internal heat 
generation, then it again attains zero at the 
unheated region.  Figure 4(a) shows a similar 
trend in Figure 4(b) in which xxσ  profile shows 
minimum value due to the compressive force is 
occurring at the starting end of heated region and 
gradually tensile forces increase the magnitude 
towards the outer part.  
Figure 4(a) shows xxσ  profile illustrates that 
more compressive stress occurring at the inner 
part which goes on increasing towards positive 
magnitude along  x −  direction and it attains a 
maximum at the outer edge. yyσ  and zzσ  has a 

maximum tensile stress at the outer surface, 
whereas the compressive stress is occurring on 
the all the four edges (i.e. for x  and y ) are at 
zero temperature.   

 
Figure 4 (e): Thermal stresses zzσ  along x −

direction for different values of .y  

 
Figure 4 (f): Thermal stresses zzσ  along y −

direction for different values of .x  
 

 
Figure 4 (a): Thermal stresses xxσ  along x −

direction for different values of .y  

 
Figure 4 (b): Thermal stresses xxσ  along y −

direction for different values of .x  

 
Figure 4 (c): Thermal stresses yyσ  along x −

direction for different values of .y  

 
Figure 4 (d): Thermal stresses yyσ  along y −

direction for different values of .x  
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A similar trend is also observed in Figure 4(b) and the increment in the stress may be due to the 
increase in the rate of heat propagation which initially leads to compressive force and expands 
more as distance decrease towards the section heat supply. 
The dimensionless thermal stress zzσ  has maximum tensile stress at the outer surface, whereas the 
compressive stress is occurring on all the inner edges (i.e. for x  and y ), and zero stresses at the 
unheated region. 
5. CONCLUSIONS 
The unsteady–state thermal bending of a thin rectangular plate subjected to a partially distributed 
temperature on the top face was analyzed by a classical method. The boundary condition of all the 
four edges (i.e. / 2x a= ±  and y b= ± ) and another boundary condition at bottom face (i.e. 

/ 2z h= − ) are kept at zero temperature with proper arguments that rigorously were satisfied.  
The method followed to obtain the solution can be applied with ease to other thermal bending 
problem like moderately thick rectangular plates with simply–supported or clamped edges or so. 
From the results of the numerical calculations for the thin rectangular plate, the following 
conclusions may be drawn: 
 The advantage of this classical approach is its generality and its mathematical power to handle 

different types of mechanical and thermal boundary conditions during small deflection under 
partial thermal loading. 

 The maximum tensile stress shifting towards mid–core from inner and outer surfaces of the 
plate. This could be due to heat and stresses available due to internal heat sources under known 
sectional heat supply. 

 Initially, the value of stresses of all the four edges and bottom are zero as per the proposed 
prescribed surface temperature, and it attains maximum bending stress at mid–core. The effect 
of stretching on the stresses is stronger than that of bending. 

 Neglecting the inertia term from Eq. (15), we get the static solution of small deflection. 
 The aforesaid bending analysis concept can be beneficial in the field of micro–devices or 

microsystem applications, planar continuum robots, predicting the elastoplastic bending and 
so forth. 
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