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Abstract: This paper deals with the thermoelastic analysis of functionally graded 
hollow spherical bodies subjected to constant mechanical and thermal loading. The 
temperature field is arbitrary function of the radial coordinate, the material 
properties vary according to power law functions along the radius of the sphere. 
An analytical method is presented to determine the displacements and stresses 
within the spherical body. The method is expanded to tackle the problem of 
spherical bodies made from temperature dependent radially graded materials. The 
results are compared to results coming from finite element simulations. 
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1. INTRODUCTION 
In recent years functionally graded materials (FGMs) have been widely used 
in numerous engineering applications due to their excellent mechanical 
properties. The smooth transition between the components decreases the 
chance of debonding and cracking under mechanical and thermal loads. 
Lots of books and papers deal with the mechanics of FGMs from different 
aspects. Books by Boley and Weiner [1], Nowinski [2], Lekhnitskii [3] and 
Shen [4] give solutions to many linearly elastic problems for non-
homogeneous components. There are a lot of papers such as [5-12] that 
investigates different thermoelastic problems of heterogeneous simple 
structural components (disks, beams, cylinders or plates).  
Zimmerman and Lutz ([13], [14]) gave analytical solutions for the stresses 
and displacements in radially graded spherical bodies and circular 
cylinders. Paper [15] presented solutions for thick-walled radially graded 
cylinders and spheres where the material properties was described by 
exponential functions. Kar and Kanoria [16] dealt with the determination of 
thermo-elastic interaction due to a step thermal loading on the boundary 
surfaces of a radially graded orthotropic sphere in the context of linear 
theories of generalized thermoelasticity. Bich and Tung [17] presented an 
analytical approach to investigate the non-linear axisymmetric response of 
radially graded shallow spherical shells subjected to constant external 
pressure and temperature field incorporating the effects of imperfections. 
Paper [18] studied the elastic and perfectly plastic radially graded spheres 
where the material properties were power functions of the radial 
coordinate. Nayak et. al and Bayat et. al in [19] and [20] presented analytical 
solutions to obtain the thermal stresses within thick spherical pressure 
vessels made of FGMs subjected to axisymmetric thermomechanical loads. 
The material properties are assumed to be graded in the radial direction 
based on the power-law function of the radial coordinate but the Poisson 
ratio has constant value and the temperature fields had a specific forms. 
Gönczi in [21] and [22] derived analytical methods to calculate the thermal 
stresses in multilayered spheres and disks, then used these methods to deal 
with the general problems of radially graded spherical pressure vessels and 
disk with arbitrary temperature dependent material properties. Ye et. al [23] 
studied the vibration of laminated functionally graded spherical shells with 
general boundary conditions assuming power law distribution based on 
three-dimension linearized shell theory and Rayleigh-Ritz method.  
Nematolli et. al. [24] gave an analytical solution for the displacement and 
stress fields in thick-walled rotating spherical pressure vessel made of 
functionally graded materials in a uniform magnetic field assuming power 
law distribution along the thickness.   
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In paper [25] a numerical method is presented to determine the thermoelastic wave in multilayered 
spherical shells with functionally graded layers under thermal loading based on Lord-Shulman 
generalized coupled thermoelasticity theory. 
Viola et. al. [26] developed a numerical method for the static behavior of functionally graded 
spherical shells and panels subjected to uniform loading, the material properties were power law 
functions of the thickness coordinate. Qoliha and Fadaee [27] dealt with the axisymmetric bending 
analysis of a hybrid piezoelectric layered functionally graded spherical cap. The analytical solution 
was given based on thin shell theory and coupled electro-mechanical equations. Arefi and Zenkour 
[28] studied the problems of functionally graded spherical pressure vessels using non-linear shell 
theory and Adomians decomposition method. In [29] a closed form analytical solution is presented 
for special thermoelastoplastic problems of thick-walled spheres. Akinlabi et. al. [30] developed a 
thermoelastoplastic method to calculate the stresses and displacements in functionally graded 
spheres after thermal treatment. Paper [31] used perturbation technique to solves incompressible 
spherical shell problems with temperature dependent material properties. 
Our aim is to present an analytical solution for radially graded spheres subjected to combined 
mechanical and thermal loads. As we can see in the literature, the temperature fields have specific 
forms and the temperature dependency is often neglected. In this paper the temperature field T is 
arbitrary function of the radial coordinate, the Poisson’s ratio is constant, while the material 
properties are power functions of the radial coordinate: 

0 0
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At first a radially graded hollow sphere is considered, the 
sketch of the problem can be seen in Figure 1 where a 
spherical coordinate system is used. Our aim is to determine 
the analytical solution for the stress and displacement fields 
within the components, then develop a multilayered 
approach (with n sublayers) to tackle the temperature 
dependency of the material properties, where the internal 
radius is R1=a, the outer radius is denoted by b(=Rn+1).  
2. GOVERNING EQUATIONS 
In our case displacement field has one non-zero coordinate 
ur. The kinematic equations can be expressed as 

,
d
d

= r
r

uε
r

                                  (2) 

, ,r
φ

uε ε
r

a r bϑ= = ≤ ≤                   (3) 

where εr, εφ, εϑ denote the normal strain coordinates of the strain tensor. The stress-strain relations 
lead to 
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where ν denotes Poisson’s ratio, σr, σφ and σϑ are the radial and hoop (or tangential normal) stresses. 
The equilibrium equation in this case can be given as 

( )d 2 0
d

+ − + =r
r φ r

σ σ σ b
r r

,                                                  (7) 

 
Figure 1. The sketch of the problem 
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where br is the radial body force. 
The combination of Eqs. (7), (4) and (6) yields to a differential equation for the radial displacement 
field. When the body force is neglected, the solution is  
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With a constant radial body force, the general solution for the displacement field can be expressed 
as  
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With the displacement field, the normal stresses can be calculated using Eqs. (4-6). The next step 
is the determination of the unknown constants of integration C1 and C2. When the traction 
boundary conditions are given, we have: 

1 2.( ) , ( )r rσ r = a p σ r = b p= − = −                                    (11) 
3. TEMPERATURE DEPENDENT MATERIAL 
Next we consider a temperature dependent radially graded material. Only the Young modulus, 
Poisson’s ratio and the coefficient of linear thermal expansion are arbitrary functions of the 
temperature field and are power functions of the radial coordinate r (except the Poisson’s ratio), 
e.g.: 
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Here we will use multilayered approach. The body is divided into sublayers, where in the i-th layer 
we have: 
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The temperature field is given, the sphere is divided into n sublayers, where we use discrete values 
of the temperature field for every layer. For example, we can use temperature value at the middle 
of each layer , 1( ( ) / 2)a i i iT T r R R += = + , which means, that  
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With this formulation we have the same solutions as in Eqs. (4-9). For every layer, we have 2 
unknown constants, which means that we need 2n equations to calculate them. There are two 
fitting conditions between the adjacent layers: 

 1 1

1 1

( ) ( ),
( 1 1) ( ),

r,i i r,i+1 i

r,i i r,i+1 i

σ r = R σ r = R
u r = R u r = R i = ,..n - .

+ +

+ +

=

=
                                         (15) 

which ensures the continuity of the radial stress and displacement fields. Furthermore, we have two 
additional boundary conditions at the boundary surfaces of the whole spherical body - Eq. (11). 
This way the more layers we have the more accurate the solution will be. 
4. NUMERICAL EXAMPLES 
For the first numerical example the following numerical data will be used: 
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The previously developed method will be implemented in Maple, the finite element simulations will 
be carried out by Abaqus. In the finite element model axisymmetric formulation is used, with 
quadratic coupled temperature-displacement elements. Only a quarter of the geometry is modeled 
and symmetry boundary conditions are used. The radially graded body is modelled as multilayered 
sphere with 20 homogeneous, perfectly bonded layers. The finite element model, the mesh and the 
hoop stress distribution can be seen in Figure 2. 

 
Figure 2. The finite element model of the sphere with the hoop stress 

The displacement fields coming from the analytical and numerical methods are plotted in Figure 3. 
The stress distributions can be seen in Figures 4 and 5. 

 
Figure 3. The displacement fields of the analytical 

and numerical methods 

 
Figure 4. The radial stress distributions of the 

analytical and numerical methods 

 
Figure 5. The hoop stresses coming from the finite element simulations and the analytical solution 
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In our second numerical example the temperature dependency of the material is considered. The 
following data will be used:  
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Let the number of layers be n=50, the stress fields are plotted in Figure 6. To eliminate the oscillation 
of the tangential normal (or hoop) stress coming from the sublayer technique, we used the curve 
fitting method presented in [21]. The results were in good agreement with the finite element 
simulations. 

 
Figure 6. The radial and tangential normal stresses of the second numerical example 

5. CONCLUSIONS 
An analytical method was presented to determine the stresses and displacements in radially graded 
spherical pressure vessels. The material properties were assumed to be power law functions of the 
radial coordinate. The temperature field was arbitrary function of the radial coordinate. We used 
these equations to tackle the temperature dependency of the material using multilayered approach. 
The results of the developed methods were verified by finite element simulations. 
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