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Abstract: Current investigation devises a non-dimensional lump-integral model for reduction in time of occurrence 
of unavoidable freezing and melting of the bath material onto a low melting temperature cylindrical solid additive 
of negligible thermal resistance during the melt preparation of required composition for production of steel. Such 
a reduction decreases the   production time, cost, energy requirement and environmental impact and increases the 
productivity for global competitiveness. This model regulates such an event by the bath condition denoted by 
modified conduction factor, Cofm, the melt temperature-ratio, Өab, and the heat-capacity ratio, Cr, the phase-change 
parameters: Stefan number, Sta of the additive, and that of the bath material, Stb and gives solutions in terms of these 
parameters. During this event, the additive undergoes pre-melt heating, melting at its melting temperature and 
post-melt heating up to freezing temperature of bath material stages. The first and third stages solutions are 
numeric whereas the second stage solution is in closed-form. The total time of freezing and melting reduces when 
Cofm decreases or either Stb or Cr increases whereas this time insignificantly diminishes by change in either Sta or 
Өab. For each of these parameters other parameters are prescribed. The first stage is validated with that of the 
literature by converting its model to heating the additive without freezing the bath material onto it. 
Keywords: alloyants addition, alloyants-melt bath system, mathematical modelling, freezing and melting 
 
 

1. INTRODUCTION 
Due to stiff competition and glut in the global market, steel-makers are required to manufacture steel and cast 
iron of different constituents at low cost, with high productivity and without degrading their quality. To 
produce them, their melt is first prepared by dunking and assimilating the additive in the hot metal bath and 
then passed through several metallurgical processes before it is cast. Here, an undesirable freezing and melting 
of the bath material onto the additive not required in the preparation of the melt occurs as soon as it is dunked 
in the bath.  
The occurrence is due to the development of large temperature gradient towards the additive side compared 
with that of the bath side immediately after the additive is dunked in the bath. It leads to the requirement of 
heat to be conducted to the additive much larger than the convective heat available from the bath for thermal 
equilibrium. The excess of this conductive heat is compensated by the latent heat of fusion generated from the 
freezing of the bath material onto the additive. As the time elapses, this heat conducted increases the additive 
temperature, reduces the temperature gradient at the additive side and the rate of the development of the 
frozen layer. Ultimately, the heat conducted to the additive decreases so much that the convective heat of the 
bath becomes larger resulting in melting of the frozen layer completely by the excess of the convective heat 
exposing the original additive at a raised temperature.  
This unavoidable event takes certain time and increases the production time of their manufacturing. In view 
of this, the temperature gradient, which is regulated by the order of magnitude of the ratio of the thermal 
resistance of the additive and that of the convective heat of bath including the frozen layer, acts as a controlling 
parameter for the time of the freezing and melting and consequently, the production time, such a ratio is 
recognised as Biot number, Bi. When Bi is reduced to lower than 0.1 (Bi< 1), it diminishes the temperature 
gradient towards the additive side so much that the temperature distribution becomes uniform in the additive 
and the conductive heat requirement gets reduced appreciably. It, in turn, increases the difference of bath 
convective heat and conductive heat allowing the formation of smaller thickness of the frozen layer onto the 
additive.  It takes less time to melt. Thus, the completion time of freezing and melting reduces decreasing the 
production time.  
The literature does not contain the investigation of this situation for the freezing and melting of the bath 
material onto a low melting temperature cylindrical additive. Nevertheless, when the thermal resistance of 
the additive is comparable with that of the bath, the freezing and melting of the bath material onto the 
spherical [1-6], cylindrical [7-10] and plate [11] shaped additives were studied.  It was also analysed for the 
plate and cylindrical additives[12,13] when the thermal resistance of the frozen layer developed onto them was 
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negligible with respect to that of the additive and for the cylindrical additive having negligible thermal 
resistance [14,15] as compared with the thermal resistance of the bath including the frozen layer. The melting 
temperature of these additives was assumed to be higher than the freezing temperature of the bath material. 
It was predicted that diminishing the radius of spherical additive made of aluminium in the salt melt bath 
[16], slag in slag melt bath [1] and ferro-manganese in the steel bath [6] reduces the time of freezing and 
melting of the bath material. This time was also estimated for the frozen layer developed of negligible thermal 
resistance with respect to that of the additive in case of sponge iron [17] and ferro-manganese [18] spherical 
additives.  For the cylindrical additive of steel [7], titanium [8,9], niobium [19] and zirconium [20], the freezing 
and melting time of the bath material around them was found to decrease once their radius was reduced. The 
instance interface temperature between the cylindrical additive having high [21] or low [22] melting 
temperature than that of the bath material and the freezing layer of the bath material onto it soon after 
immersing it in the bath was obtained in closed-form. For the high melting temperature plate additive [23], 
this temperature was also found as a closed-form expression. 
In the current work, axi-symmetric freezing and melting of a bath material onto a low melting temperature 
cylindrical additive is investigated, in case, the additive thermal resistance is negligible with respect to that 
of the bath including the frozen layer. Its mathematical model in a non-dimensional lump-integral format is 
designed indicating this event dependence on the non-dimensional independent parameters; the melting 
temperature - ratio, abθ , the heat capacity-ratio, Cr and the thermo-physical property-ratio, γ  of the bath-

additive system and the phase-change parameters, the Stefan number, Stb of the bath material and the Stefan 
number, Sta of the additive and the bath condition denoted by, the modified conduction factor, Cofm. During 
the freezing and melting, the additive passes through the pre-melt heating, melting and post-melt heating. 
The time of freezing and melting is almost unaffected by change in Sta or abθ , whereas the effect is significant 

in significant for variation in any of Cofm, Stb, and Cr. 

2. MATHEMATICAL MODEL     
To evolve a mathematical model for the freezing and melting of a bath material around a low melting 
temperature cylindrical additive, it is taken initially at a uniform temperature, Tai less than its melting 
temperature, Tam (Tai< Tam), and is plunged in a hot melt bath maintained at a constant temperature, Tb higher 
than the freezing temperature of the bath material, Tbm (Tb>Tbm). Instantly, the bath material begins to freeze 
around the cylindrical additive, the interface formed between additive and the freezing layer arrives at an 
equilibrium temperature, Te, Figure 1.  

 
Figure 1:  Schematic of Freezing and Melting of Bath Material onto a Low Melting Temperature Additive  

with pre-melt Heating of the Additive 
The temperature Te, lies between the initial temperature of the additive and freezing temperature of the bath 
material,(Te< Tam< Te< Tbm). Moreover, this event sets up a temperature field in the additive-bath system 
represented by     Tb>Tbm> Te>Tam>Tai. It is shown in Figure 1.With passing of the time, the frozen layer grows 
in thickness so long as the heat conducted to the additive is more than the convective heat available from the 
bath. The excess conductive heat is provided by the latent heat of fusion evolved due to freezing of the bath 
material onto the additive. Once the conductive heat becomes equal to the bath convective heat, the growth 
of the frozen layer stops. After this time, the bath convective heat is greater than the conductive heat due to 
which the excess convective heat melts completely the frozen layer exposing the additive at the freezing 
temperature Tbm of the bath material. This situation is assumed to be controlled by conjugated transient heat 
conduction. The non-dimensional integral form of this heat conduction equation governing axi-symmetry 
freezing of the bath material onto the additive can be written as  
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From physical point of view, the first term of the right side of Eq.(1) indicates the rate of heat conduction to 
the freezing layer from the bath at Raf = Rbm and the second term of the right side provides the rate of heat 
conducted to the additive  through the interface formed between the additive and freezing layer at Raf = Cr. 
The difference of these two provides the net rise of the internal energy of the frozen layer denoted by the left 
side of Eq.(1). Its first term signifies the rate of increase in thermal energy whereas the combination of the 
second and third terms corresponds to the rate of internal thermal energy available due to increase in the 
frozen layer thickness onto the additive. 
Its associated initial and boundary conditions are 

  0,CR, rbmbbf =τ=θ=θ               (2) 

   θbf= θe>0, Rbf=Cr, τ >0        (3) 
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  θbf= 1, Rbf=Rbm, τ >0            (4) 

As described above, this temperature, Te of the interface rises from the initial temperature Taiof the additive 
to the freezing temperature, Tbm, of the bath material. This additive is a solid cylinder of large length, la and 
small radius, roa and its thermal resistance is negligible in comparison with the thermal resistance of the bath 
convective heat along with that of the growing frozen layer. This situation makes the Biot number, Bi , a ratio 
between the additive thermal resistance and the thermal resistance of the bath comprising of the thermal 
resistance of the bath convective heat and the frozen layer becomes  less than 0.1 )1.0B( i ≤ . This feature 
permits the establishment of a uniform temperature in the entire cylinder, which is exactly the same as the 
interface temperature, Te, between the freezing layer and the additive. It makes the additive act as a lump 
[24,25]. With elapse of time, this temperature, Te rises from Tai

+ to Tbm, and as explained earlier the frozen 
layer grows to a maximum thickness and then melts completely. During this time due to rise in temperature 
of the additive from Taito Tbm the additive undergoes through following three different events. 
 Case-I:  Pre-melt Heating of the Additive 
In the first event, the temperature of the additive rises from its initial temperature Tai to its melting 
temperature, Tam, and only heating of the additive takes place. It is recognised as pre melt heating and 
estimated once an energy balance between the increase in the thermal energy of the additive (lump) and the 
heat supplied from the bath through the frozen layer onto the lump is applied. It leads to 

,Q2dd ana γ−=θ τ 0>τ      (5) 

Its initial condition is given by  
0ea =θ=θ ,   ,1R0 an << 0=τ         (6) 

During the time of this event, the frozen layer of the bath material developed onto the additive is represented 
by Rbf = Rbh and can be obtained from Eq.(1).  
 Case-II:  Melting of the Additive at its Melting Temperature 
The second event corresponds to only melting of the lump after it attains its melting temperature, (Tam< Tbm) 
at time ahτ=τ  in case-I. During this melting, the lump temperature remains at its melting temperature. In 
such an event, the energy balance between the heat conducted to the lump and the heat required to melt it 
completely can be cast as  

,S2Q taan γ=τ∆−   ahτ>τ               (7) 
Its initial condition is  

  ,abea θ=θ=θ  ahττ =      (8) 

Here, ahacm τ−τ=τ∆  with τacm denoting the time at which the lump completely melts. The corresponding 
frozen layer of the bath material grown onto the lump is expressed by Rbf = Rbcm and is still estimated from 
Eq.(1). 
 Case-III:  Post melt Heating of the Additive 
In the third and last event, beyond the time τacm, the melt lump gets heated from the convective heat coming 
from the bath through the frozen layer, raising its melting temperature, Tam to the freezing temperature, Tbm 
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of the bath material whereas the frozen layer grows to its maximum thickness (Rbf =  Rbmx) at time 

acmmax τ>τ=τ . An energy balance to this event with initial condition gives  

γ−=τθ ana Q2dd  ,     ,abea θ=θ=θ  acmττ >    (9) 

abea θ=θ=θ ,   0ahacm >τ>τ=τ      10) 

Note that at the time maxττ = the interface temperature and the freezing front temperature of the frozen layer 

of the bath material becomes at the melting temperature of the bath material. It makes the entire thickness of 
the frozen layer at the bath material melting temperature, Tbm. After this happening the bath convective heat 
only melts the frozen layer till it completely melts exposing the additive melt at the freezing temperature Tbm 

of the bath material. This melt then immediately assimilates in the melt bath making the melt of desired 
composition. Applying an energy balance between the rate of the melting of the frozen layer and bath 
convective heat that melts leads to  
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The conjugating conditions at the interface between the freezing bath material and the additive are  
γ−=∂θ∂ anbfbf QR , 1R,CR arbf ==     (12) 

and  

eabf θ=θ=θ ,   rbm CR =  1R a =                  (13) 

It is noted that θe remains within abe θ≤θ ,  abe θ=θ , and  1eab ≤θ<θ , respectively,  for Case-I, Case-II and 

Case-III. 
The model just evolved indicates that the freezing and melting of the bath material around the negligible 
thermal resistance additive of low melting temperature is controlled by independent non-dimensional 
parameters; the property- ratio, γ, the melting temperature-ratio, θab, and the heat capacity-ratio, Cr of the 
additive –bath system, the Stefan number of the bath material, Stb and that of the additive, Sta and the 
conduction factor, Cof. 
3. SOLUTIONS 
Examination of the model comprising of Eqs.(1) to (13) reveals that the current event is mathematically non-
linear owing to the phase-change moving boundary, Eq.(4) of the freezing bath material and Eq.(7) of the 
melting of the additive and coupled because of conjugating conditions, Eqs.(12) and (13). These features forbid 
its closed-form solutions when exact analyses of the literature are applied. In such a situation semi-analytical 
methods become suitable. Since an integral method, one of these employed in the recent past, gave closed-
form solutions for several phase-change problems [26-28] or reduced  such problems to first order ordinary 
differential equations [14,15,29] for which it did not yield closed-form solutions. Runge-Kutta method is often 
resorted to obtain numerical solutions. 
 Solution for Case I: pre-melt heating of the additive 
In view of the above, Eq.(1) regulating the freezing and melting of the bath material onto the additive has 
already been cast in an integral form which can be reduced to 
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once Eqs. (3) and (4)  are employed.  
To solve this equation, prescription of temperature distribution within the frozen layer is required. A linear 
temperature profile of the following form is taken.  
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It satisfies the boundary conditions, Eqs. (3) and (4). Its choice is realistic due to giving accurate results for 
the analogous phase-change problems [14,26-28] in the past studies. Applying Eqs.(4) and (15) , Eq.(14) leads 
to 
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Using Eqs.(12) and (15),  Eq.(5) related to heating of the additive becomes 
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when Eq.(15) is employed, Eqs.(16) and (18) are coupled due to presence of both Rbm and θe in them and their 
examination indicates that they do not lead to  closed form solutions. Owing to this, they are arranged in 
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Using Eq. (17) Eq. (18) changes to 
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Eqs.(17) and  (19) form an initial value problem having initial conditions 0e =θ , rbm CR = at 0=τ . These 

equations neither give closed-form solutions using any analytical methods nor get their solutions initiated 
owing to giving infinite value, ∞ at the initial conditions when the Runge-Kutta method is employed. To 

overcome this difficulty, series solutions for small times in the neighbourhood of time, 0→τ , i.e. ( )610−=τ , 
are resorted to obtain the starting values of θe and Rbm. These values are then employed as initial values in the 
Runge-Kutta method.  It now gives numerical solutions that are calculated for all times. 
 Series Solutions for Small times 
To obtain the series solutions for small times that lie in the neighbourhood of the initial time 0=τ , the series 
solutions for Rbmand θecan be respectively written as 
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are assumed. They fulfil the initial condition 0e =θ , rbm CR =  at 0=τ . These give a0 = Cr, and 

 b0 = 0.  To facilitate the determination of other co-efficient of Eqs. (20) and (21), they are employed in Eqs. 
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Note that the Mat Lab facilitates to provide above expressions.  
 Numerical solutions for all times:  

As explained earlier, the starting values for Rbm and θe in the vicinity of 0→τ , i.e. ( )610−=τ , are found from 

the above series solutions They are then used in Runge-Kutta method to estimate Rbm and θe from Eqs. (17) 
and (18) until the time at which θe attains the melting temperature,θab of the additive. The solutions so 
obtained indicate that the rate of rise of the additive temperature, θe is faster than the growth of the frozen 
layer, due to which the additive attains its melting temperature, θab before the growing frozen layer reaching 
its maximum thickness. At this time, ahτ  the developed frozen layer is denoted by Rbh. 

 Solutions for Case-II, Melting of the additive at its Melting Temperature 
Beyond this time, τahthe additive begins to melt till it melts completely at its melting temperature. θe = θab. The 
frozen layer onto the additive, however, continues to grow to attain Rbcm at the time τacm of complete melting 
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whereas the initial condition for this situation becomes 
Rbm = Rbmh , τ = τah     (23) 

The melting of the additive is obtained by equating the heat conducted to the additive through the interface 
from the frozen layerEq.(12),and the heat absorbed as the latent heat of fusion by the additive. It gives 
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Employing Eq. (15) with θe = θab Eq.(24) is transformed to  
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In this situation, Eq. (22) for the freezing and melting readily gives a closed-form solution. Rearranging this 
Eq.(22) gives 
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Assuming R*
bm= Rbm – Cr, Eq.(26)is recast as 
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It yields a closed-from solution that satisfies the initial condition of this occurrence  
,ahτ=τ bmhbm RR =      (28) 
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where, 
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Eq. (29) provides the behaviour of the freezing and melting of the bath material during which the additive 
melts at its melting temperature, θab.  At the time of completion of the melting of the additive denoted by τ = 
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τam, the frozen layer thickness Rbm increases from Rbh to Rbmm. The behaviour of Rbm in the range of 

bmmbmbh RRR ≤≤  can be obtained once Eqs. (25) and (29) are employed. It gives  
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  (30) 

For prescribed values of Sta, Stb, θab, γ, Cr Eq. (30) readily gives the value of  Rbm
*=Rbmm

*=Rbmm-Cr, when the 
additive completely melts.  
 Solution for Case III: Post Melt Heating of the Additive melt  
After the time of above occurrence the melt temperature, θe increases from θab to the freezing temperature of 
the bath material (θe = 1). During this period the melt only gets heated. It is still governed by Eq.(17) 
whereas Eq. (18) regulates the freezing and melting of the bath material onto the additive for abe θ>θ  and 

bmnbm RR > Combination of these two equations, Eqs. (17) and (18) subjected  to initial conditions  

θe = θab, Rbm
*=Rbmm

*, τ = τam     (31) 
 leads to      
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Note that Eqs. (17) and (32) form a simultaneous first order ordinary differential equations in an independent 
variable τ , the solutions of which can be immediately found using Runge-Kutta method. In this case also, the 
rate of rise of the additive melt temperature is much faster than the further growth of the frozen layer, resulting 
in the interface temperature, θe reaching earlier the freezing temperature of the bath material (θe=1). As 
growing frozen layer front in contact with bath is already at the bath material freezing temperature, the entire 
frozen layer becomes at this freezing temperature (θe=1) due to which no heat is conducted through such a 
layer resulting in ceasing the further growth of frozen layer. In this situation, the frozen layer attains the 
maximum thickness. Beyond this happening the bath convective heat is utilized in only melting the frozen 
layer till the frozen layer completely melts. Applying an energy balance to such an event between the melting 
of the frozen layer and the bath convective heat enabling this layer to melt is given by 
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−                                 (33) 

It can also be readily derived from Eq. (24) when θe=1 is substituted in it. The   closed-form solution of 
Eq.(38)becomes 

( )max
ofm

tb
bmxbm C

S
RR τ−τ−=                        (34) 

which satisfies the boundary condition maxtτ=τ  when bmxbm RR = , the thickness of maximum frozen layer 

Eq. (34) readily gives the total time, τt of freezing and melting  once Rbmx becomes Cr , after melting the frozen 
layer. Their substitution in Eq.(34) leads to 

max,bmx
*

tb

ofm
t R

S

C
τ+=τ  where rbmxbmx

* CRR −=         (35) 

4. VALIDATION 
To validate the current problem, the bath convective heat is maintained at such a large value that it exceeds 
the requirement of additive conductive heat, resulting in no development of the frozen layer onto the additive 
rather only heating of the additive takes place. It makes this problem a classic problem [24,25] of unsteady 
state heating of the cylindrical solid additive of negligible thermal resistance subjected to convective heating 
from the bath. This vanishes of Eq.(16) and replaces the right hand side of Eq.(17) by the bath convective heat 
resulting in 

( )ebie Bdd θ−θ=τθ      (36) 

Its initial condition is  
0e =θ 0=τ              (37) 
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The solution of Eq. (42) satisfying Eq. (43) yields 

( )( ) τ−=θθ− iB
be e1      (38) 

It is exactly the same as that of the literature [ 24,25]. 
5. RESULTS AND DISCUSSIONS 
The event of axi-symmetric freezing and melting of the bath material around a low melting temperature 
cylindrical additive soon after immersion of this additive in the bath is investigated, when the additive thermal 
resistance is negligible with respect to the thermal resistance of the bath including the frozen layer formed 
onto the additive. Its non-dimensional mathematical model of lump-integral form is devised. It enables to 
show this event dependence upon the non-dimensional independent parameters; the phase-change 
parameter, the Stefan number of the bath material. Stb, and that of the additive, Sta, the bath condition 
regulated by the modified conduction factor Cofm, the property- ratio, γ, the heat capacity-ratio, Cr, and the 
melting temperature-ratio, θab, of the additive-bath system. Their values for different additive-bath systems 
are presented in (TABLE 1). The Stefan number is the ratio between sensible heat and latent heat of fusion of 
the phase-change material. Its low value is indicative of high latent heat of fusion allowing the development 
of smaller thickness of the frozen layer of the bath material onto the additive for the same convective heat 
supplied by the bath or enabling to melt smaller thickness of the additive. The melting temperature-ratio, θab<1 
of the additive denotes the additive melting temperature lower than that of the bath material. It causes both 
heating and melting of the additive. Cr, the heat capacity-ratio is the ratio of the heat capacity of the bath 
material and the heat capacity of the additive. Cr>1 represents large sensible heat release by the freezing layer 
with respect to that in the additive. 

Table – 1: Based on thermo physical properties of the Steel bath [3] 

 
 

Thermo-physical properties of low melting 
temperature cylindrical solid additive [34] 

[Tai=293K(20oC), ro=0.01m] 
Non-dimensional parameters 

Additive 
Tam 

[K(oC)] 

Cpa 

J/KgK 
ρa 

Kg/m3 
La 

J/Kg 
Ka * 

W/mK Sta θ ab Cr Cofm 

Magnesium 923(650) 1024 1740 376830 156 4.106 0.417 2.984 136.133 
Zink 693(420) 389 7140 100860 116 5.827 0.264 1.914 87.33 
Lead 600(327) 130 11373 29100 35.1 6.75 0.203 2.664 164.057 

Tb = 1873K(1600 oC) ,  Tbm = 1804K(1531oC),  Cb=0.69KJ/KgK, Lbm= 277000 J/Kg, 
Kbm= 29.3W/mK, ρbm =7820Kg/m3,  Stb = 3.71, h = 1000 W/m2K. 

Due to this the total heat available from the bath side which is sum of the bath convective heat, and release of 
sensible heat, increases resulting in decrease in  requirement of less latent heat of fusion to meet the conductive 
heat needed by the additive. It yields in growth of lesser thickness of the frozen layer, Figure 8. The modified 
conduction factor, Cofm is the product of the property-ratio and the conduction factor, Cof (Cofm= γCof). This 
Cof is defined as the ratio of heat conducted to the additive due to difference of the freezing temperature of the 
bath material and the initial temperature of the additive and the convective heat given by the bath. It lies 
between 0 and ∞ (0≤ Cof ≤∞) 0Cof →  pertains to no heat conduction to the additive. Owing to this, the 

freezing does not occur. Itresults in absence of the freezing and melting. Also, 0Cof → can be  attained in case 

the bath is made highly agitated enabling to give extremely high heat transfer coefficient, ∞→h , and, in 
turn, high bath convective heat, h(Tb-Tbf).It balances the  heat conducted to the additive. Consequently, no 
freezing of the bath material onto the additive takes place. ∞→ofC corresponds to the absence of the bath 
convective heat owing to which the heat conducted to the additive is met by the latent heat of fusion generated 
by only freezing of the bath material onto the additive. These suggest that the time of undesirable freezing and 
melting can be reduced to a negligible value once the conduction factor is brought to almost zero value

)0C( of → , for an additive–bath system. It is attained by making the bath highly agitated. 
Figure  2 exhibits the time-variant freezing and melting of the bath material   onto the low melting 
temperature additive, and the rise in the temperature of the additive during the freezing and melting for 
different values of the modified conduction factor, Cofm with Stb, Sta, Cr and Өab assumed to be parameters. 
Figure 4 corresponds to these behaviours but for various values of the Stefan number Stb of the bath material. 
Cofm, Sta, Cr and Өab are taken as parameters. Depicted in Figure 6 are these behaviours for different Stefan 
number, Sta of the additive when Stb, Cofm, Cr and Өab are considered as parameters. These behaviours are 
plotted in Figure  8 for various values of the melting temperature ratio Өab in case of specified Sta, Stb, Cofm and 
Cr whereas in Figure  10 they are for different Cr, when Sta, Stb, Өab and Cofmact as parameters. All these figures 
show unique behaviour of the freezing and meltingin that the frozen layer up to its maximum thickness is 
parabolic,whereas its melting follows a linear behaviour and takes more time to melt them than that of the 



 ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XIX [2021]  |  Fascicule 1 [February] 

85 |  F a s c i c u l e  1  

freezing time. It is in contrast with the large time taken for the development of the frozen layer of the bath 
material onto the high melting temperature additive of negligible thermal resistance [14].The associated 
temperature of the additive also builds-up fast  to reach its melting temperature. With passing of the time, 
the melting temperature remains unaltered till the additive absorbs heat coming from the bath through the 
contact interface equal to its latent heat of fusion in order to convert the solid phase of the additive to the melt 
phase of the additive at its melting temperature. After this, the melt of the additive temperature rises to the 
freezing temperature of the bath material and then it 
remains at this freezing temperature until the frozen 
layer completely melts exposing the additive in the 
melt state which immediately mixes and assimilates 
in the bath. 
 Influence of modified conduction factor, Cofm 

Figure 2 relates to the behaviour of the freezing and 
melting of the bath material around the additive with 
time for different Cofm. The Sta, Stb, Өab, and Cr act as 
parameters. As stated earlier, for any Cofm, the freezing 
region is parabolic whereas the melting zone is linear, 
but as Cofm decreases its size reduces diminishing the 
maximum frozen layer thickness developed, its time 
of formation, the total time of the freezing and 
melting, and the time of melting of the frozen layer 
developed. 
The corresponding rise in the temperature in the 
additive to the freezing temperature of the bath 
material also takes place at reduced time. Physically, 
this behaviour seems to be true since decreasing 
Cofmincreases the bath agitation and the associated 
bath convection. As the heat conducted to the 
additive is balanced by the sum of the convective heat 
of the bath and the latent heat of fusion generated by 
the freezing of the bath material onto the additive, the 
reduced Cofm and, in turn, increased bath convection 
diminishes the requirement of the latent heat of 
fusion resulting in the formation of smaller thickness 
of the frozen layer. Its melting time becomes less and 
the time of the freezing and melting is also less, Figure 
2. In this reduced time, the rise in temperature of the 
additive to attain freezing temperature of bath 
material is faster, inset of Figure 2.The graphs in 
Figure  3 relate to the modified conduction factor, Cofm 
variant maximum frozen layer thickness grown, 
R*

bmx, its time of development, τmax and the total time 
of freezing and melting, τt. They indicate that R*

bmx 
and its time of development maxτ  vary linearly with 
increase in the modified conduction factor, Cofm for 
prescribed values of  Stb, abθ ,  Cr and Sta. But the total time of the freezing and melting increases fast once Cofm 

is allowed to increase. 
 Effect of the Stefan number of the bath material, Stb 
Shown in Figure 4 are the time-variant freezing and melting of the bath material onto the additive, and the 
temperature build-up in the additive for various Stb withSta, Cofm, Cr and θab, behaving as parameters. Their 
behaviour is similar to those exhibited in Figure 2 for any Stb, but unlike the appreciable change in the 
maximum frozen layer thickness, its time of formation, its time of melting of the frozen layer and the time of 
the freezing and melting for change of Cofm from 50 to 150, there is negligible change in the maximum thickness 
of the frozen layer grown and its time of development, as Stb rises from 2 to 4. However, in this range of Stbthe 
time of melting of the frozen layer and time of the freezing and melting increase much once Stb decreases from 
4 to 2. This is true since decrease in Stb increases the latent heat of fusion of the bath material due to which 
the available bath convective heat melts the frozen layer slowly in comparison with that of the low latent heat 

 
Figure 2: Time dependent freezing and melting of the bath 

material onto the low melting temperature cylindrical 
additive of negligible thermal resistance and the 

corresponding temperature rise in the additive for 
different modified conduction factors, Cofm. Stb, Cr, θab and 

Sta are taken as parameters. The inset relates to detail of 
temperature rise in the additive. 

 
Figure 3: Variation of  maximum frozen layer thickness, 

Rbmx
*, its growth time,τmax and the total time τt, of 

freezing and melting of the bath material with modified 
conduction factors, Cofm, for certain values of Sta, θab, Cr 

and Stb. 
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of fusion of frozen layer. It results in increased time of the freezing and melting, Figure 4.Exhibited in Figure  
5 are the maximum frozen layer developed, R*

bmx, its time of growth, τmax and the total time  of the freezing 
and melting, τt with the Stefan number, Stb of the bath material for given Sta, θab, Cr and Cofm. The rise in Rbmax 
is linear with respect to Stb but its time of development, maxτ is almost invariant with increase in Stb. The total 
time of the freezing and melting, however, decreases once Stb increases. It is true since increase in Stb decreases 
the latent heat of fusion of the bath material allowing faster melting of the frozen layer by the same convective 
heat supplied from the bath resulting in reduction of the total time of freezing and melting. 

 
Figure 4:  Time variant freezing and melting of the bath 
material onto the low melting temperature of negligible 

thermal resistance cylindrical additive and the 
corresponding build-up in the temperature in the additive 

for different Stefan number of melt bath material, Stb. 
Cofm, Cr, θab and Sta are taken as parameters. The inset 
exhibits the detail of the temperature rise in the additive. 

 
Figure 5: Stefan number, Stb of the bath materialvariant  

maximum frozen layer thickness, Rbmx
*, its growth 

time τmax and total time τt, of freezing and melting of 
the bath material for certain values of Sta, θab, Cr, 

andCofm. 
 

 Effect of Heat Capacity -ratio, Cr:    
Figure 6 is related to the freezing and melting of the bath material and the behaviour of the temperature in the 
additive with time for different heat capacity-ratio, Cr, Sta, Stb, θab, and Cofm behave as parameters. These graphs 
show similar behaviour as those appeared in Figure 4. However, it is observed that decreasing Cr increases 
the freezing and melting time, the growth of the maximum frozen layer thickness, its time of development and 
its time of melting. The associated rise in temperature to reach the melting temperature of the additive gets 
retarded, inset of Figure 6. Such findings are true since decrease in Cr reduces the heat capacity of the bath 
material.   

 
Figure 6: Time dependent freezing and melting of the 

bath material onto the low melting Temperature 
cylindrical solid additive of negligible thermal resistance 

and the corresponding rise in temperature of in the 
additive for different Capacity ratio, Cr, of additive-melt 

system. Cofm. Stb, θab, and Sta are considered as parameters. 
The inset provides the detail of temperature rise in the 

additive. 

 
Figure 7: Variation of  maximum frozen layer thickness, 
R*

bmx, its growth time τmax and total time τt, of freezing 
and melting of the bath material with different values of   
Cr of the additive-bath system for certain values of θab, 

Cofm, Sta and Stb. 
 

It results in liberation of lesser sensible heat during the freezing of the bath material due to which availability 
of the total heat consisting of the sensible heat plus bath convective heat and latent heat of fusion released 
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due to freezing of the bath material becomes less and in order to meet the conductive heat requirement of the 
additive, more latent heat of fusion of the bath material is needed. It is compensated by the growth of the 
larger thickness of the frozen layer, Figure 6. 
The heat capacity-ratio, Cr dependent maximum thickness of the frozen layer developed, R*

bmx, its time of 
growth, τmax and the total time of the freezing and melting τt are shown in Figure 7. In this case also, all of 
them are almost linear with respect to Cr but their values decrease once Cr increases from 2 to 4. However, 
decrease in Rbmax is faster. It is owing to fact that increase in Cr increases the heat capacity of the bath material 
and, in turn, the available heat from the bath side which is sum of the bath convective heat and the increased 
sensible heat. This results in requirement of less latent heat of fusion to compensate the conductive heat 
needed by the additive which is available due to growth of the smaller thickness of the frozen layer Figure 7. 
 Impact of the Stefan number of the additive Sta: 
Figure 8 corresponds to the time-dependent freezing and melting of the bath material onto the additive and 
the associated rise in temperature of the additive in case of different Sta, Stb, θab,Cr and Cofm are assumed to be 
parameters. It is observed that the behaviour of the freezing and melting and the temperature of additive are 
similar to those of Figs. 2 and 4. However, irrespective of change in Sta from 4 to 6, there is no change in the 
freezing and melting graph. It is possibly due to the fact that despite change in Sta, the additive remains of the 
negligible thermal resistance causing no change in the freezing and melting graph for a given bath convective 
heat. But the corresponding interface temperature between the additive and frozen layer rises to the melting 
temperature of the additive faster, Figure 6 as Sta increases from 4 to 6. It is due to the fact that decreasing Sta 
reduces the latent heat of fusion of the additive and increases the availability of larger bath convective heat 
after compensating this latent heat. This permits the attainment of the melting temperature in the shorter 
time, inset of Figure 8. Figure 9 displayed Sta variant the maximum frozen layer thickness, Rbmax, its time of 
growth, τmax, and the total time of the freezing and melting, τt. It is observed that they are almost invariant as 
Sta changes. It is true since the freezing and melting graph remains the same despite change in Sta Figure 8.  

 
Figure 8: Behaviour of the freezing and melting of the 

bath material onto low melting temperature cylindrical 
additive of negligible thermal resistance and the 

corresponding rise in temperature of the additive with 
time for different Stefan number, Sta of additive. Cofm, Cr, 
θab and Sta are taken as parameters. The inset indicates 

the detail of additive temperature rise. 

 
Figure 9: Stefan number, Sta of the additive dependent 
the  maximum frozen layer thickness, R*

bmx, its growth 
time τmax and total time τt, of freezing and melting of the 

bath material for certain values of Sta, θab, Cr and Cofm. 
 

 Influence of melting temperature – ratio, θab: 
In the Figure 10 are exhibited the freezing and melting of the bath material onto the additive and the 
temperature build-up in the additive with time for various melting temperature-ratio, θab. Sta, Stb, Cofm and Cr 
act as parameters. The freezing and melting feature is similar to that appeared in Figure 8. However, increasing 
θab increases slightly, the maximum frozen layer thickness developed, its time of freezing, its time of melting 
and the total time of freezing and melting. This happens because increase in θabincreases the melting 
temperature of the additive and in order to raise this temperature, the available bath convective heat takes 
more time. This, in turn, causes the growth of the frozen layer of larger thickness taking more time to melt by 
the available bath convective heat.  Figure 11 corresponds to plots of the maximum frozen layer thickness 
developed, Rbmax, its time of growth, τmax, and the total time of the freezing and melting τt with respect to θab. 
All of them increase almost linearlyas θab increases. Such a prediction is realistic since rise in θab raises the 
melting temperature of the additive that requires more time for its attainment. In this increased time, the 
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growth of R*
bmax, and melting time become larger for the available convective heat of the bath. Comparing the 

effect of either Cofm or Stb on these parameters namely R*
bmax, τmaxand τt, the effect of Өab is insignificant. 

 
Figure 10: Time dependent freezing and melting of the 
bath material onto the low melting temperature and 

negligible thermal resistance cylindrical solid additive 
for different Stefan number, Sta of the additive 
considering   Cofm. Stb, Cr, and θab are taken as 
parameters. The inset indicates corresponding 

temperature rise in the additive. 

 
Figure 11: Behavior of  maximum frozen layer thickness, 

R*
bmx, its time of growth τmax and total time τt, of freezing 

and melting of the bath material with Stefan number, Sta 
of the additive for certain values of θab, Cofm, Cr and Stb. 

 Model Application to Industrial Practices 
The solutions of the model just developed is applied to 
additives namely aluminium, magnesium and zinc often 
employed in steel manufacturing. It is observed from the 
Figure 12 that for the given bath condition, [Table-1] the 
zinc takes minimum time for the freezing and melting of 
the bath material onto it. It, in turn, takes minimum 
production time for the manufacture of steel. 
6. CONCLUSIONS 
During this event of unavoidable freezing and melting, 
the model indicates that the additive undergoes three 
phases denoted by the pre-melt heating, the melting of 
the additive at the melting temperature and post-melt 
heating. The pre-melt heating of the additive is 
regulated by Cofm, Stb and Cr whereas, additive melting 
and post-melt heating of the additive are controlled by 
Stb, Cr, Cofm, θab and Sta. The solutions of additive pre-
melt and post-melt heating are in numerical form and 
that for the melting in closed-forms. The freezing and melting time is unaffected by change in Sta of the additive 
whereas this time alters insignificantly due to change in either θab or Cr. For a prescribed additive-bath system, 
unavoidable freezing and melting time and, in turn, production time can be reduced once Cofm is decreased. 
NOMENCLATURE 
Bi Biot number, hra/Ka 
Bim Modified Biot number, (hra/Ka)*(KaCa/KbCb) 
C heat capacity (ρ Cp), Jm-3 K-1  
Cof          conduction factor, 1/ γBim(θb-1), 1/ Bi(θb-1), 
Cof m      modified conduction factor,  Cof  (θab-1) 
Cp specific heat, (J Kg -1K-1) 
Cr heat capacity ratio, Cb/Ca 

h heat transfer coefficient, Wm-2 K-1 
K thermal conductivity, Wm-1 K-1 
L latent heat of fusion, JKg-1 
r radius, m 
Rah non-dimensional radius in the heat penetration region of the additive, (rah/ra) 
Rai non-dimensional radius of the heat penetration front in the additive at any time, (rai/ra)  
Rbf non-dimensional radius within the frozen layer region, (Cbrbf/Cara) 

 
Figure 12: Time dependent freezing and melting of the 
bath material onto the low melting temperature and 

negligible thermal resistance cylindrical solid additive 
and associated temperature built-up in the additive 

often employed   in steel manufacturing. 
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Rbm non-dimensional radius of the frozen layer front at anytime, (Cbrbm/Cara) 
Sta Stefan number of the additive, Ca(Tbm-Tai)/Laρa 
Stb Stefan number of the bath material, Cb(Tbm-Tai)/Lb ρb 
t time, s 
T temperature, K 
Tb bulk temperature of the bath material, K 
Te instant equilibrium temperature at the interface between the additive and the frozen layer, K 
GREEK LETTERS 
α thermal diffusivity, m2 s-1 
γ property ratio, (KbCb/KaCa) 
ρ density,(Kgm-3) 
θ non-dimensional temperature, (T-Tai/Tbm– Tai) 
θab        ratio of melting or freezing temperature of the additive  that of the bath, (Tam-Tai)/(Tbm-Tai) 

τ non-dimensional time,(KbCb/Ca
2 r0

2)t = 
2

a

a

r

tγα
 

τ* non-dimensional time per unit property ratio, 
SUBSCRIPTS 
a  cylindrical additive, 
ai          initial condition of additive, 
af within melting or freezing region of additive, 
ah within heating region of additive, 
am melting or freezing of additive, 
b           frozen bath material or bulk condition of bath material, 
bf within melting or freezing region of bath material, 
bm melting or freezing condition of bath material, 
e  interface condition, 
max  for maximum frozen layer development, 
t for total time of freezing and melting, 
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