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Abstract: In this paper, an innovative approach is proposed for designing an estimator with robust unknown input 
for undefined interval type-2 T-S fuzzy systems with immeasurable decision variables. In system modeling by the 
T-S fuzzy model, decision variables may be a function of system modes, which in many cases are immeasurable due 
to the structure of the system. Therefore, in this paper, the decision variables of the system are considered 
immeasurable. This assumption has led to a new trend in robot design. Also, in order to create a residual signal that 
has the highest sensitivity to a fault and the lowest sensitivity to unknown input, the /H H

∞
optimization 

criterion is considered. The existence of this criterion in design has led to two theorems in estimator design with 
new conditions based on linear matrix inequalities. 
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1.  INTRODUCTION 
In the system identification methods, describing a system is highly dependent on prior knowledge about the 
system. In addition to the physical description, using signal bases methods are common as described in [1-2] 
for the space application and in tracking systems [3]. Meanwhile, in the identification process, the measured 
parameters by sensors must be transmitted in real-time mode. The compressed sensing methods are usually 
used to decrease the required bandwidth in the communication link. The time for generating compressed data 
for transmission is an essential key when we consider mobile devices, with the fact that data should be sent 
to the central processor as soon as possible. In addition, there are some wearable sensors that have a limited 
amount of power, and may only be capable of doing simple computations. With the aim of increasing the 
speed and simplicity of the compressors, [4] proposes an approach that can generate compressed ECG 
samples in a linear method and with CR 75%. In structural health monitoring/identification (SHMI), sensors 
intermittently monitor the operational condition of the system and send the recorded data to a remote server 
for processing. Data compression can be used to decrease the required storage size of the received data, and 
for efficient use of transmission link bandwidth, because of the enormous volumes of sensor data produced 
from the sensors. In [5-6-7], the fundamentals for acquiring the data for the control purposes are presented. 
An effective way to model complex nonlinear systems is to use Takagi-Sugeno (T-S) fuzzy systems [8,9]. In 
modeling nonlinear systems using T-S fuzzy systems, activation functions are very important. Typically, in 
previous works, activation functions were considered as a function of the measurable variables (system 
output or system input). But it turns out that in some cases, such a choice does not create the right model of 
a nonlinear system [10]. In this regard, the use of system states in the activation functions of fuzzy systems, 
makes it possible to model a wider range of nonlinear systems [11]. Considering state variables with the 
assumption that they are non-measurable, the discussion of observer design for T-S fuzzy systems with the 
non-measurable decision variable is one of the most challenging and complex topics in recent years. The 
assumption that these variables are immeasurable causes a great deal of complexity in the design process, and 
so far, few methods have been implemented for this purpose [12,13]. Also, according to recent research on the 
inability of type-1 fuzzy sets to model uncertainties [14], in the present work, type-2 fuzzy sets are considered 
as a solution to this issue [15]. 
According to the contents on the importance of the subject, in this paper, the design of the observer with an 
unknown input for interval type 2 T-S fuzzy systems is discussed. In designing this observer, it is assumed 
that the decision variables are immeasurable. This assumption creates a new trend in the design of this group 
of observers. Also, in order to create an optimal residual signal in the presence of disturbance and unknown 
input, which has the highest sensitivity to fault and the lowest sensitivity to an unknown input, /H H∞

optimization criteria have been used. To achieve such a criterion, two theorems are proved to provide the 
necessary conditions for design in terms of linear matrix inequalities. 
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2.  MAIN RESULTS 
The system considered in this paper is interval type 2 fuzzy T-S. The system under study involves a variable 
delay with time in the system input and output. Also, this system is affected by disturbance and unknown 
input as noise. As you know, T-S systems are generally weighted by linear subsystems. The system considered 
in this article is as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1 2
1

 
i i i

p

i i d i d i i x
i

x t x t A x t A x t t B u t B u t t E d t H w t F f tµ τ τ
=

 = × + − + + − + + + ∑  

  ( ) ( ) ( ) ( ) ( ) w yy t Cx t Dd t F w t F f t= + + +                                  (1) 

where ( ) nx t R∈ represents the system state vector, ( ) qu t R∈  shows the system input vector, ( ) py t R∈ is the 

output vector, ( ) md t R∈ is the disturbance signal, ( ) rw t R∈  shows the unknown input and ( ) ff t R∈

represents the fault in the system. Also, 1τ  and 2τ  are delays vary with time that are variable when the 

conditions ( ) ˆ0 i dit hτ< < < ∞   and ( )0 1
ii dt hτ< < <  are satisfied. Also, the activation function ( )( )i x tµ  can be 

calculated by the following equation: 
( )( ) ( )( ) ( )( ) ( )( ) ( )( )L U

i i i i ix t x t x t x t x tµ µ ν µ ν= +                                   (2) 

where in this equation, ( )(L
i x tµ and ( )( )U

i x tµ  are the lower and upper bonds of the fire range can be 

calculated based on the basics governing type-2 interval fuzzy systems. Furthermore,  ( )( ) [ ]0,1iv x t ∈  and 

( )( ) [ ]0,1iv x t ∈  are considered as nonlinear functions in general if ( )( ) ( )( ) 1i iv x t v x t+ =  is satisfied. 

Accordingly, the structure of the observer with the unknown input in this article is as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1
1

 ˆ
i i

p

i i i i i z z
i

z t x t N z t G z t t Q u t J u t t K y t K y t tµ τ τ τ
=

 = × + − + + − + + − ∑  

 ( ) ( ) ( )1x̂ t z t L y t= +         ( ) ( )ˆ ˆy t Cx t=          ( ) ( ) ( )( )ˆr t V y t y t= −                                         (3) 

where ( )y t  and ( )u t  are measurable variables and x̂  is estimated variable. By defining the estimation error 

as ( ) ( ) ( ) ˆe t x t x t= − , the dynamics of the error can be obtained as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1
1

    Δ ,  ,  ,  ,ˆ ˆ   , 
i i

p

i i i w f
i

e t x t N e t G e t t F w t F f t T x x x u d wµ τ µ µ
=

 = + − + + + ∑  

                               ( ) ( ) ( ) ( )1 2r t VCe t VK w t VK f t= + +                                                                (4) 

where [ ] ( ) ( ) ( )2 1 ,    
iw i i w wF TH L F L F w t w t w t = + − =    ( ) ( ) ( )2 1 ,    

i if x i y yF TF L F L F f t f t f t  = + − =   
  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1 2
1 1

Δ ˆ0
i i i

p p

i i i d i d i i x
i i

x t x t A x t A x t t B u t B u t t E d t H w t F f tµ µ τ τ
= =

   = − × + − + + − + +    
∑ ∑  

In obtaining such a dynamic for error, the following definitions: 

11.D T I L C= −           2 1 12. 
ii i zD L N L K= −         3 1 23. 

ii i zD L G L K= −  

and also the following assumptions: 
 31.  0iC L =    22. 0i i iC TA L C N+ − =       33.  0

id i iC TA L C G+ − =  

 4.  0i iC TB Q− =        5.  0
id iC TB J− =     26.  0i iC TR L D+ =  

are considered. 
It should be noted that the residual signal is based on the assumption 0VD = . To get observer gain matrices, 
you first need to calculate the 1 2 3,  , i iL L L  and V matrices. Then, using 1 3D D−  and 1 5C C− conditions, the 

observer gains are calculated. 
The remarkable point in the design of this observer is the presence of the ( )Δ 0T  term in dynamic of the error 

obtained. This complicates the process of designing and creating new cases in the field of observers with 
unknown inputs, which, according to the authors, has not yet provided such conditions in the design of this 
group of observers in previous works. 
In the following, two theorems are presented to create a residual signal with the highest fault sensitivity and 
the lowest sensitivity to unknown input. The two cases mentioned above and the algorithm that is finally 
introduced show the process of designing the benefits of this observer. 
Lemma 1 [12]. For each X  and Y  matrix with appropriate dimensions, the following inequality is established 
for each positive constant ò : 
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T 1XT T TX Y Y X X Y Y−+ ≤ +ò ò  
Assumption 1. In this paper, it is assumed that ( ) ( )Δ 0 e tγ≤ where γ  is a positive constant. 

Theory 1. For the scalar variables ,  , γ β δ  and 0>ò , if there are symmetric positive definite matrices , ,P S Q  

and symmetric positive semi definite matrix Z and 1 2,  , Φ , ΦX Y and F  matrices, in such a way that the 

following conditions are established for 1,2, ,i p= … : 
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ˆ

ˆ
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 

−  

              
2

* 0 0
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iP I PN P P
P

I

γ − + +
 − < 
 − 
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 1Φ 0D =         1 2Φ Φ 0i i iPR CR D− + =      0ZD =  (5) 

where  ( )11Θ  i TS sym X C ZC= + −       13 2Θ
i

i T T
fPF F C ZK= + −         ( ) ( )22Θ   1  

i

i
dh S sym Y=− − −  

 1 2Φ Φi i i iPN PA CA C= − +    1Φi ii d dPG PA CA= −    1 2 1Φ Φ Φ
if xi xi i y yPF PF CF F F = − + −   

 TZ V V=  
Then, the following system is permanently stable and ,  r fG β∞ ≥ : 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )1
1

  Δ 0ˆ
i

p

i i i f
i

e t x t N e t G e t t F f t Tµ τ
=

 = + − + + ∑  

 ( ) ( ) ( )2r t VCe t VK f t= +  (6) 

Also, the observer gains can be calculated by 
1
2V Z=  and 1

1 1ΦL P−=  and 1
2 2Φi iL P−= . 

Proof of Theorem 1. The method used to prove this theorem is Lyapunov’s indirect method. Accordingly, the 
LKF function considered to prove this as follows: 

( ) ( ) ( )
( )

( ) ( )
1

tT T

t t
V t e t Pe t e Se d

τ
τ τ τ

−
= + ∫                              (7) 

The optimality criteria ,r fG β> is equivalent to: 

( ) ( ) ( ) ( )2
, 0

0T T
r fJ r t r t f t f t dtβ

∞
 = − ≥ ∫                  (8) 

According to the ( ) 0V ∞ > , it can be written: 

( ) ( ) ( ) ( ) ( )2
, 0

0T T
r fJ r t r t f t f t V t dtβ

∞
 = − − ≥ ∫   

Given the above relationship, we need to calculate the derivative of the first order of the LKF function 
presented before. To calculate this derivative, the Leibnitz integral formula is required as follows: 

( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( ), , .  , .  ,
b x b x

xa x a x

d f x t dt f x b x b x f x a x a x f x t dt
dt

= −′ ′ +∫ ∫                       (9) 

Considering this relationship and also the properties that were expressed for the system under review, it can 
be concluded that: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

( )
( )

1

1

1 1

1 1

2 1

2   [ ] 

T T T
d

tT T

t t

V t e t Pe t e t Se t h e t t Se t t

e t X e t t Y f t F e t e t t e d
τ

τ τ

τ τ τ τ
−

≤ + − − − − +

 + − + × − − −  ∫

 



 

Considering the derivative of the first order of the LKF function, the optimal criterion can be rewritten as 
follows: 

( )( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
, 0

  Θ Γ , Γ , Δˆ 2 0
t T T T T T

i i i ir f t t
J x t t Q t d e t P e t PN e t e t N Pe t

τ
µ τ τ τ

∞ −

−

 ≥ + − − −  ∫ ∫  

where in this inequality we have: 

( )
( )
( )( )

( )
1

e t
t e t t

f t

η τ

 
 

= − 
 
 

       ( ) ( ) ( ) ( )1Θ Θ ˆ
i

T

T T
i i d

X X
t t h t Y Q Y t

F F
η η η η−

   
   = +    
      

  
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T
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T T

PG X Y C V VK F

h S sym Y F

I K V VKβ

 − + − −
 

= − + 
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X
t t Y

F
τ η

 
 =  
  

 

Based on Lemma 1 and Assumption 1, this relationship can turn into the following: 

( )( ) ( ) ( ){ }, 0
1

  Θ Θˆ
p

T
i i ir f

i

J x t e t e t dtµ
∞

=

 
≥ − 

 
∑∫  

1 2Θ T T
i i iPN N P PTT P Iβ−= + + +ò ò  

Now, in order to obtain the condition , 0r fJ ≥ , it is sufficient that the two conditions Θ 0i >  and  Θ 0i <
are established simultaneously. 
Theorem 2. For the scalar variables ,  , γ β δ  and 0>ò , if there are symmetric positive definite matrices 

, ,P S Q  and symmetric positive semi definite matrix Z  and 1 2,  , Φ , ΦX Y  and W   matrices, in such a way 

that the following conditions are established for 1,2, ,i p= … : 
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1Φ 0D =      1 2Φ Φ 0i i iPR CR D− + =        0ZD =                                                (10) 

( )11Θ  i TS sym X C ZC= + −        13 1Θ
i

i T T
wPF W C ZK= + −        ( ) ( )22Θ   1  

i

i
dh S sym Y=− − −  

1 2Φ Φi i i iPN PA CA C= − +       1Φi ii d dPG PA CA= −      [ ]1 2 1Φ Φ Φ
iw i i i w wPF PH CH F F= − + −  

TZ V V=  
Then, the following system is permanently stable and ,  r fG α∞ ≤  

( ) ( )( ) ( ) ( )( ) ( ) ( )1
1

  Δ 0ˆ
i

p

i i i w
i

e t x t N e t G e t t F w t Tµ τ
=

 = + − + + ∑  

 ( ) ( ) ( )1r t VCe t VK w t= +  

Also, the desired observer gain can be calculated by the following relationships, 1
1 1ΦL P−= , 1

2 2Φi iL P−=  and 
1
2V Z= . 

Proof of Theorem 2. The optimization criterion in this case can be equated as follows: 

( ) ( ) ( ) ( )2
, 0

 : T T
r wJ r t r t w t w tα

∞
 − = ∫  

Given the condition ( ) 0V ∞ > and the procedure used to prove Theorem 1, the LMI conditions and the 

equality in Theorem 2 can be easily obtained. 
So far, two separate theorems have been proposed 
to create a residual signal with the highest 
sensitivity to fault event and the lowest sensitivity 
to unknown input. In order to use these two 
theorems simultaneously, a repetitive algorithm is 
presented in [16] which has been used in the 
simultaneous application of these two theorems. 
3.  SIMULATION RESULTS 
In order to evaluate the validity of the method 
presented in the design of the observer, the system 
parameters (1) are considered as follows: 

 
Figure 1. The fault event considered in the system 
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Figure 2. Residual signals and its evaluation criteria; Measurable decision variables 

1 2

2.7 0.75 0.65 1 0.75 0.75
0.5 2.4 1 ,           0.15 1 0.9
0.53 1.7 2.2 1.3 0.3 1.1

A A
− − − −   

   = − = −   
   − − − −   

      
1 2

1.1 0.15 0.52 0.8 0.3 1.1
0.1 1.2 0.62 ,           0.3 0.2 0.1
0.2 1.1 0.75 0.5 0.3 0.3

d dA A
− − −   

   = − = −   
   − − − −   

 

[ ] [ ]1 20.4 0.5 0.3 ,          0.1 0.7 1.1T TB B= − = −      [ ] [ ]
1 2

0.45 0.2 0.65 ,           1.1 0.6 0T T
d dB B= − − = −  

[ ] [ ]1 20.7 0.68 0.43 ,          0.9 0.4 0.9T TE E= − − = −      [ ] [ ]1 20.8 0.8 0.8 ,           0.4 0.2 0.5T TH H= − = − −  

[ ] [ ]
1 2

0.9 0.45 1.04 ,          0.45 0.5 0.6T T
x xF F= − = −  

[ ]
1 1 1
1 1 0 ,        0.6 0.4 0.9
0 1 1

T
yC F

 
 = = − 
  

   [ ] [ ]0.9 0.5 0.7 ,          0.4 0.2 0.5T T
wF D= − − = −  

Considering such parameters for the system, solving Theorems 1 and 2 simultaneously with the introduced 
duplicate algorithm results in observer gains. The following parameters are obtained: 

1 2

1.38 0.12 0.08 2.62 0.08 0.13
0.22 2.77 1.44 ,              0.09 2.93 1.93
0.06 0.95 2.23 0.41 1.24 3

N N
− − − − −   
   = − = − −   
   − − − −   

 
1 2

0.33 0.33 0.2 0.14 0.17 0.22
0.1 0.74 0.15 ,              0.12 0.28 0.16

0.67 0.14 0.53 0.07 0.1 0.52
G G

− −   
   = − = −   
   − −   

 

[ ] [ ]1 20.03 0.2 0.4 ,            0.12 0.37 0.08T TQ Q= − − = − [ ] [ ]1 20.01 0.02 0.12 ,            0 0.14 0.05T TJ J= − − = − −  

1 21 1

0.29 0.05 0.09 0.1 0.41 0.52
0.48 0.26 0.64 ,              0.59 0.01 1.03

0.2 0.32 0.03 0.23 0.42 0.86
z zK K

− − − −   
   = − − = − −   
   − − − − −   

   
1 22 2

0.32 0.16 0.11 0.15 0.07 0.05
0.16 0.09 0.05 ,              0.14 0.07 0.04
0.61 0.3 0.22 0.11 0.05 0.03

z zK K
− − − −   

   = − − = − −   
   − − − −   

 

At this stage, the gain of the observer is attempted to create and evaluate the residual signal in the presence of 
the fault. For this purpose, the input of the system is considered a unit step. The ( )0.5 1 sin  t+ and ( )0.2 1 sin t−  

signals are considered system states time variable delay and its input, respectively. Unknown entries are used 
in the form of white Gaussian noise with a power of 0.005 and disturbance as ( )2/ 1t t+ in the simulation. 

The fault event considered in this paper is a triangular pulse which is shown in Figure (1). As can be seen, the 
fault was applied to the system within 4 to 6 seconds of simulation, with the amplitude of 0.5. 
Applying such a fault event to the system, assuming that the decision variables are measurable, creates a 
residual signal as shown in Figure (2). Also, in order to evaluate the designed residual signal, a criterion is 
presented in [17]. This comparable criterion can be calculated by solving an LMI in order to obtain it. The 
selection of this criterion is logically related to the structure of the residual signal, and therefore, the correct 
and reliable criterion in the evaluation of the residual and fault detection. According to Figure (2), shortly 
after the fault occurs, the evaluation criterion exceeds the threshold and the fault occurs. In the continuation 
of simulating this article, it is assumed that the decision variables are immeasurable, and finally, the signal 
remains and the evaluation criterion in diagnosing the occurrence of the fault event is shown in Figure (3). 
The results indicate the detection of a fault shortly after occurrence in the system. The reason for the short 
delay created in the evaluation criterion goes back to the first derivative of the fault. As can be seen, there was 
both a fault and a derivative in the formation of the residual signal, since the derivative of the triangular signal 
is a small, there is a little delay in detecting the fault. If the fault is selected as a square pulse with a large 
derivative in the 4th second of the simulation, the occurrence of the fault is immediately recognized, which is 
not provided here due to the limitations of the pages of this article. 
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4.  CONCLUSION 
Due to the importance of T-S fuzzy systems in modeling nonlinear systems, the topic of observer design for 
this category of systems was presented in this article. In using T-S fuzzy systems, decision-making variables 
and how to select them are important; So that if they are not well selected, a good model for nonlinear systems 
will not be created. In this regard, in this article, in order to better model systems, system states are considered 
as decision variables of activation functions. If these variables are immeasurable, this choice will create a 
complex design process. Also, in order to create an optimal residual signal that has the highest sensitivity to 
the fault event and the least sensitivity to the unknown input, the /H H∞  optimization criterion was used. 

The result was the creation of two theorems in the design of the observer, which provided the necessary 
conditions for the creation of the observer based on the LMI. Generalize the results in the event that 
parametric uncertainties are considered. Using this method in designing other observers such as the slider 
model observer, using the model adaptation method, as well as selecting other optimization criteria can be 
used as an extension. Consider the method presented in this article. 
Note: This paper is based on the paper presented at International Conference on Applied Sciences – ICAS 2020, 
organized by University Politehnica Timisoara – Faculty of Engineering Hunedoara (ROMANIA) and University of 
Banja Luka,  Faculty of Mechanical Engineering Banja Luka (BOSNIA & HERZEGOVINA), in Hunedoara, ROMANIA, 
09–11 May, 2020. 
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