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Abstract: This work is devoted to identifying the optimal location of elastoplastic damping joints incorporated 
into folded low shells under dynamic action. To do this, the system of governing motion equations of folded low 
shells is established using the Dirac δ-functions and Heaviside unit function. The solution is obtained by Bubnov-
Galerkin method for determining the minimum frequencies in free vibrations of the folded low shells according to 
the wave number and fold edge number. Based on the obtained minimum frequencies and the associated vibratory 
forms, the optimal locations of the elastoplastic damping joints of 12m x12m square plane folded low shells are 
determined depending on the wave number and fold edge number. 
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1. INTRODUCTION 
The damping of structural vibrations is a problem present in all areas of construction. Damping solutions 
range from passive devices (e.g., introduction of friction or integration of viscoelastic materials) [1] to active 
control. Depending on the different types of damping devices their implementation can take different forms. 
Depending on the frequency band you want to treat the damping devices can be damping pulls [2,3] or sticked 
panels to the structure[4]. In the past few years, many damping devices have been developed and applied in 
civil engineering structures, especially in earthquake-prone regions[5 − 7]. Viscous dampers generally 
represent a broad class of passive energy dissipation devices and have emerged as one of the most popular 
ones. By providing additional damping and energy dissipation, they can efficiently suppress earthquake-
induced vibrations and, therefore, limit the damage to structural and non-structural components [8 − 10]. To 
better understand the damping properties of such dampers, many experimental studies have been conducted, 
including damper element tests [11,12] and shaking table tests of small-scale and full-scale structures with 
viscous dampers[13,14]. However, studies focusing on in-service structures with such dampers when 
subjected to large earthquakes are relatively rare[15,16]. This practical issue requires accurate state 
quantification for dampers and structure itself, which holds a key position in structural health, safety, and 
risk assessments[17,18].  Recent applications involving dampening treatments show a tendency to 
incorporate treatments into vibrating structures. These new methods, some of which are presented by[19], 
most often result in choosing a "smart glue" in order to reduce the vibration amplitudes of the structure. The 
design of an efficient damping system is a challenge that engineers are addressing with the demand for 
increasingly stressed and lighter structures. To do this, the most well-known and most widely used means is 
the use of viscoelastic materials in various forms. Thus, these can come in the form of uniform layers inserted 
between two elastic layers (viscoelastic heart sandwiches) [20 − 23] in the form of a honeycomb filled with 
viscoelastic material[24,25]. There are also soul-material systems made of tangled fibers[26].  
For folded shells, the finite element modelling of the dynamic response of structures consisting of quadrangle 
panel assembly is a well-known technique. When these structures are subject to dynamic actions significant 
dynamic shear stresses occur at shell junctions posing a dangerous threat to structural rigidity and stability. 
To overcome this disadvantage one of the techniques used is the incorporation of damping elastoplastic 
inserts at all junctions in order to reduce the vibratory effects that are detrimental to the mechanical 
performance of folded shells. This leads to often 
very high implementation costs. 
The aim of this work is to propose a method of 
identification the optimal location of 
elastoplastic damping joints in low folded shells 
under dynamic action in order to reduce their 
number and implementation costs. 
2. MATERIALS AND METHODS 
Studied structure is a low folded square-plane 
shell with a mathematical model presented in figure 1. 

 
Figure 1. Mathematical model of square-plan folded shell 
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Determination of the elastoplastic damper joint location in the shell is based on the conditions of appearance 
the minimum frequencies and associated vibratory forms. 
The system of governing motion equations for low shell is given by [27]: 

�
D∆2w + ∆kφ + γhẅ = 0

1
Eh
∆2φ − ∆kw = 0                   (1) 

D – Low shell cylindrical stiffness; φ, w - stress and displacement functions ; h - shell thickness; E - Yong 
module; γ – material density; ∆ - Laplace's differential operator, ∆k - Vlasov's differential operator 

∆k= kx
∂2

∂y2
+ ky

∂2

∂x2
                               (2) 

Generalized functions are widely used for analysis of folded middle-plane shells, particularly the δ-Dirac 
functions and Heaviside unit function. 
In expression (2) for folded shell with double curvature, kx. and, ky are given by [28]: 

�
kx = ∑ θiδ(x − xi);k

i=1

ky = ∑ θjδ(y − yi),l
j=1

                            (3) 

θi, et  θj are the angles formed between the plane elements of the average shell surface.  
δ(x − xi) , δ�y − yj� – the Dirac’s delta functions, i =1,2…k ; j=1,2…l ; 
k , l - the number of surface fold edges in directions x and y axes respectively. 
By substituting (2) and (3) in equation system (1) one obtains equation system of folded shell motion in 
following form: 

�
D∆²w + ∂2φ

∂y²
∑ θiδ(x − xi) + ∂2φ

∂x²
∑ θjδ(y − yi) + yhẅ =1
j=1 0k

i=1 ;

1
Eh
∆2φ − ∂2φ

∂y2
 ∑ θiδ(x − xi) −k

i=1  ∂
2w
∂x²

∑ θjδ(y − yi) = 0.
,

1
j=1

                                      (4) 

By deriving the motion equations (4) we get: 
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m
N
j=1                   (5) 

In this form the Boubnov-Galerkin method can be used to solve these equations. After mathematical 
transformations one obtains the quadratic expression of free vibration frequencies of symmetrically folded 
surface of any configuration m and n, hypotheses for thin-walled low shells: 

ω²mn = 1
yh
�DVmn2 +

4Eh�
β2n
a ϑx+

α2m
b ϑy�

2

Vmn
2 �                                                        (6) 

Here ϑx = ∑ θisin²αmxk
i=1  et  ϑy = ∑ θjsin²βnyl

j=1 ,   Vmn = α²m + β²n ; D = Eh2

12(1−μ2) – the shell cylindrical rigidity. 

∝m= mπ
a

, βm = nπ
b

 ; m and n the wave number following x and y axes respectively ; a and b the shell 
dimensions following x and y axes respectively. 
Expression (6) determines the free vibration frequencies of low folded shell with any fold number in both 
directions. 
3. RESULTS AND DISCUSSION 
 Determining the minimum frequencies of square-plan folded shells 
The structure under consideration is a square plane folded shell of 12m x12m.  
In the figure 2 and figure 3 are shown the frequency variation of the square-plane low shell depending on the 
wave number m and n and the fold ridge number k and l in both directions. 
Analysis of the curves of figure 2 and figure 3 shows that: 
≡ When the edge number k = l is between 1 and 3, there is a minimum frequency for m=k+1 and n=l+1. As a result 

the dangerous sections will be the sections at the junctions from which occur rotations and shears of plane 
elements one in relation to the other. 

≡ When k=l> 3 we have a minimum frequency for m=1 and n=1. In this case no shear in the central section. 
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Figure 2. Frequency variation curves based on the wave 

numbers (m, n) for 12x12m shell 

 
Figure 3. Frequency variation curves based on 12x12m 

shell thickness 
There is a decrease in the minimum frequency for decrease in the edge number and thickness but there is 
decrease in the minimum frequency for increase in the shell dimension on the plane. Hence the need to provide 
damping devices in the structure. 
Table 1 shows that the free vibration frequency values of studied low-plane folded shell increase significantly 
when the wave number in both directions m and n is greater or equal to 4. On the other hand, when the shell's 
dimensions on the plane are larger there is a decrease in frequency values. 

Table1. Free vibration frequency values of 12m x12m square plane shells 
12m х 12m shells 

m = n 1 2 3 4 5 6 7 8 9 10 11 12 
k = l = 0 46.0 46.3 47.8 51.6 58.8 69.9 85.2 104.4 127.3 153.5 183.1 215.9 
k = l = 1 30.8 5.9 33.4 23.4 47.8 52.7 78.1 93.8 122.6 146.5 179.9 211.0 
k = l = 2 34.1 34.6 13.2 41.4 50.0 52.7 79.5 99.8 118.7 150.4 180.5 211.0 
k = l = 3 29.4 30.0 32.2 23.4 47.0 60.4 77.6 93.8 122.3 149.4 179.7 211.0 
k = l = 4 36.8 37.2 39.0 43.6 36.6 64.3 80.6 100.7 124.2 146.5 181.0 214.1 

Table 2 Minimum frequencies, wave numbers and edge numbers values for 12x12m square plane shells 
Square plane folded shells 

Wave numbers Fold edge numbers Minimum frequency ωmin (GHz) Wave numbers for which ωmin 

m = n = 1…12 

k = l = 1 5.86 m = 2; n = 2 
k = l = 2 13.18 m = 3; n = 3 
k = l = 3 23.44 m = 4; n = 4 
k = l = 4 36.78 m = 1; n = 1 

m = 1 
n = 1…12 

k = l = 1 24.86 m = 1; n = 2 
k = l = 2 31.53 m = 1; n = 3 
k = l = 3 29.43 m = 1; n = 1 
k = l = 4 36.78 m = 1; n = 1 

m = 2 
n = 1…12 

k = l = 1 5.86 m = 2; n = 2 
k = l = 2 25.44 m = 2; n = 3 
k = l = 3 27.71 m = 2; n = 4 
k = l = 4 36.93 m = 2; n = 1 

m = 3 
n = 1…12 

k = l = 1 13.42 m = 3; n = 2 
k = l = 2 13.18 m = 3; n = 3 
k = l = 3 26.25 m = 3; n = 4 
k = l = 4 37.47 m = 3; n = 1 

The fold edge numbers k and l as well as the wave numbers m and n are reported in Table 2. In this same table 
are reported the calculation results of the minimum frequencies as function of different fold edge numbers and 
different wave numbers. 
 Determining of optimal location of elastoplastic damping joints in square-plane folded low shells 
In Figure 4 are shown the curve appearances of the free frequencies and vibratory form variation of 12m x 12m 
square plan folded shell as a function of different wave numbers and different fold edge numbers. In this same 
figure are shown the vibratory forms corresponding to given minimum frequency. 
Curve analysis shows that for shells with a fold edge in each direction (k=l=1) the minimum frequencies occur 
when m=n=2; for shells with three edges (k=l=3) the minimum frequency occurs when m=n=4. So, the joints will 
be arranged in the central sections to the right of the fold edges (figure 4-c). 
For shells with two edges (k = l = 2) a minimum frequency is obtained when m = n = 3, corresponding to a 
symmetrical vibratory form. In this case if the joint was laid out in the center section it would not work at 
shear this is why it is more rational to arrange it on the edge lines (figure 5). 
For k=l≥4 we have minimum frequency when m=n=1. So, for even fold edge number and odd wave number, the 
joints arranged on the edge lines of the symmetrical sections relative to the central axes will be subjected to 
shear forces (figures 6-7) while for odd fold edge number and even wave number damping joints arranged on 
central section edge lines and sections symmetrical to the central lines will be subjected to shear forces (figure 
5). 
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a)  ωmin  for m=n=2        b)  ωmin  for m=n=3          c)   ωmin  for m=n=4      d)  ωmin  for m=n=1 

Figure 4. Free frequency and vibratory form variation of square plane folded shell as function of wave numbers and fold 
edge numbers 

a) b) 
Figure 5. Arrangement of joints (inserts) of square-plane shells: 

a) k=l=1; b) k=l=3 

 
Figure 6. Arrangement of plastic joints in square-

plane folded shells for k=l=2 
CONCLUSION 
In this work we can retain the following: 
 After having built a mathematical model of square plane folded shell it is 
proposed a method of determining the optimal location of the elastoplastic 
damping joints at the junctions of the folded shell flat elements. 
 The minimum frequencies in free vibration of 12m x 12m square plane folded 
shell shall be determined. 
 From obtained minimum frequencies it is constructed the associated 
vibratory forms for different wave number values m and n, different fold edge 
numbers k and l. 
 Finally, it is proceeded to the determination of the optimal location of the 
elastoplastic damping joints in low square plane folded shells according to the 
wave numbers and the fold edge numbers. 
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