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Abstract: The present work focused on the buckling of four–layer symmetric laminate subjected to biaxial compression. Governing equations are derived 
based on Classical Laminated Plate Theory (CLPT). The composite plates are bonded by an internal elastic medium and surrounded by external elastic 
foundation. The influences of carbon fiber orientation angle and aspect ratio on critical buckling load are demonstrated for symmetric laminate. We analyzed 
four lamination scheme which fiber angle orientation is equal to 0°, 30°, 45° and 90°. 
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1. INTRODUCTION 
A composite material is composed of reinforcement (fibres, particles, flakes, and/or fillers) embedded in a matrix 
(polymers, metals, or ceramics). The matrix holds the reinforcement to form the desired shape while the 
reinforcement improves the overall mechanical properties of the matrix. A laminate is called symmetric if the 
material angle, and the thickness of plies are the same above and below the midplane.  
To use the laminated composite plates efficiently, it is necessary to develop appropriate analysis theories to 
predict accurately their structural and dynamical behavior. Currently, the analysis of the behavior of the 
laminated plates is an active research area because of their complex behavior [1]. The structural instability 
becomes an important concern in a reliable design of composite plates. Several studies on laminated plates 
stability were concentrated on rectangular plates [2–5]. It is known that buckling strength of the rectangular 
plates depends on the boundary conditions [3], plies orientation [3,4,6] and geometrical ratio [3,5–7]. The thin 
composites structures which are largely used become unstable when they are subjected to mechanical or 
thermal loadings which leads to buckling .  
To predict buckling load and deformation mode of a structure, the linear analysis can be used as an evaluation 
technique [8]. The analysis of the laminated plates is more complicated than the analysis of an isotropic and 
homogeneous material [9]. Finite element method is used for the analysis of the buckling behavior of the 
notched antisymetrical fibers plates under compression [10]. The majority of the investigations on laminated 
plates utilize either the classical lamination theory (CLT), or the first–order shear deformation theory (FSDT). 
The main contribution of this work is to perform a composite laminated plates analysis by using the Classical 
Laminated Plate Theory (CLPT) is described in [11–13]. Various geometries of the plates subjected to 
compressive load are studied.  
2. THEORETICAL FORMULATION 
Let us consider composite plate the length 
of a , width b and height h, as shown in 
figure 1. The composite plates are 
surrounded by external elastic medium 
and subjected to biaxially compression. 
The external medium is modeled as 
Pasternak–type foundation which is 
equivalent to Winkler modulus parameter 

wk  and shear modulus parameter Gk  of 
polymer matrix Figure 1.  
Bending displacements of the plate–1 and 
plate–2 are w1(x, y, t) and w2(x, y, t), 
respectively. It was assumed that each 
composite plate had the length, a  and width, b. We assume that composite plates are biaxially compressed by 
forces Nxx and Nyy in the directions of x and y axes. 
 Governing equations of biaxially compressed composites plates 
The governing equation for biaxially compressed orthotropic composite plate embedded in an elastic medium 
[14], which is based on Classical Laminated Plate Theory CLPT, have following form. 

 
Figure 1. Schematic diagram of symmetric laminate subjected to biaxial compression 
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We assume that composite plate is biaxially compressed in the directions of x and y axes, Nx=Ny. Now we can 
define compression ratio which equals the ratio between the forces acting in y and x directions 

yy
yy xx

xx

N
N N

N
δ δ= → =

                                                                                (2) 
Substitution of equation (2) in equation (1) we derive the general form of governing equation 
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Before solving constituent equation (3), boundary conditions should be defined. In this study it is assumed that 
all edges on both nanoplates are simply supported. This means that both the displacements and moments at 
the composite plate edges are zero. This can be expressed by following equations 

(0, , ) 0iw y t = , ( , , ) 0iw a y t = , ( ,0, ) 0iw x t = , ( , , ) 0iw x b t =          1,2i =                           (4) 
(0, , ) 0, ( , , ) 0, ( ,0, ) 0, ( , , ) 0i i i iM y t M a y t M x t M x b t= = = =                                       (5)  

 
Figure 2. Symmetric laminate coupled by an elastic medium 

If in the middle of the four–layer laminate sistem we insert an elastic medium that separate the laminate into 
two symmetric parts, we will have two composite plates with two laminae (Figure 2.) whose main equations 
are: 
≡ Plate 1: 
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≡ Plate 2: 

( ) ( )
4 4 4 2 2

22 2 2 2 2
11 12 66 22 2 1 2 14 2 2 4 2 22( 2 ) 0x y w G

w w w w wD D D D N N k w w k w w
x x y y x y

∂ ∂ ∂ ∂ ∂
+ + + + + + − − ∇ − =

∂ ∂ ∂ ∂ ∂ ∂                      (7)  
2 2

2
2 2x y

∂ ∂
∇ = +
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 Buckling loads of biaxially compressed composite plates  
In this section different explicit cases of biaxial buckling will be considered. The symmetric laminate is subjected 
to both biaxial as well as biaxial compressive forces. The cases studied will be composite plates buckling with 
out–of–phase (asynchronous); in–phase (synchronous); and when one of the composite plates is considered to 
be fixed. 
 Asynchronous–type buckling (out–of–phase) 
Composite plates system is assumed to be bi–axially buckled. Figure 3 shows the three–dimensional 
configuration of double composite plates system with the asynchronous sequence of buckling: 

1 2( , , ) ( , , ) 0w x y t w x y t− ≠  
In out–of–phase, sequence of buckling the nanoplates is buckled in opposite directions. We evaluate the 
buckling load for asynchronous–type buckling and use equations (6,7) for the biaxial buckling solution of 
double composite plates system. 
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Figure 3. Asynchronous–type buckling 

Subtracting equation (6) from equation (7) we get: 
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( )1 2 2 1 1 2 1 2 2 2 2 2w w w w w w w w w w= − − + = − = − =                                             (10) 

We assume that the buckling mode of the double–nanoplate system as 

( ) ( )
1 1
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                                                                         (11) 

In the upper equation: 

,m
a

n
b
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                                                                                  (12) 

where m and n are the half wave numbers. 
Substituting equation (11) into equation (9), we get critical buckling load for asynchronous type of buckling 
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+                                               (13) 
 Synchronous–type buckling (in–phase) 
The schematic illustration buckling of the 
orthotropic composite plates in–phase is shown in 
Figure 4, which is the first mode synchronous type 
buckling. For the present system, the relative 
displacements between the two composite plates 
are 

1 2( , , ) ( , , ) 0w x y t w x y t− =  
In synchronous buckling state, the double 
composite plates system can be considered to be 
as one of the composite plates.  
We apply the same procedure as earlier for solving 
equations  
Following procedure similar to that of out–of–phase buckling, critical buckling load for synchronous type of 
buckling can be written as 
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+                                                          (14) 
Biaxial compression of double composite plates sistem can be effectively treated as a single composite plate 
because for this case the critical buckling load is independent of the stiffness of the coupling springs. 
 Buckling with one composite plate fixed 
Consider the case of composite plates sistem when one composite plate is stationary w2 = 0 which is shown 
in Figure 5. Critical buckling load for this type of buckling can be written as 
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Figure 4. Synchronous–type buckling 
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Figure 5. Buckling with one composite plate fixed 

In fact, when one of the composite plates in composite sistem is fixed (w2 = 0), the composite system behaves 
as composite plate on an elastic medium. 
3. NUMERICAL RESULTS 
This section shows analysis of four–layer symmetric laminate made of two types of materials: 
≡ Kevlar 49/CE 3305 (material M1) 
≡ Graphite–Epoxy AS–1/3501–5A (material M2) 
For laminates of total thickness of 1mm with four sheets of individual thickness of 0.25mm, bending stiffness 
matrix D has the following form [14]: 
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Based on the above expression and using the MATLAB software package, bending stiffness matrix for selected 

laminate schemes 0 ,30 ,45 ,90θ = ° ° ° °  are obtained. 

 
Figure 6. Schematic layout of symmetric laminate with bending stiffness matrix 
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Substituting the values of bending stiffness matrix in the previously set equations we obtain values of non–
dimensional critical force for three types of buckling. 
Based on equations (13), (14) and (15), in this section follows analysis of carbon fiber orientation angle on the 
non–dimensional buckling load. Nondimensional buckling load is calculated for the value of Winkler modulus 

310 /wk N m=  while the shear modulus parameter 1 /Gk N m= . The number of half waves was m = 1, n = 1, 
while the compression ratio was δ =2. The thickness of one composite plate is h = 0,25 mm, while the length 
takes values within a=0–0,6m range and width takes value b=0,3.  

 
) 230 10 10 230a M M M M° ° ° °                          ) 245 10 10 245b M M M M° ° ° °  

Figure 7. Effect of carbon fiber orientation angle on non–dimensional buckling load 

 
) 260 10 10 260a M M M M° ° ° °                    ) 290 10 10 290b M M M M° ° ° °  

Figure 8. Effect of carbon fiber orientation angle on non–dimensional buckling load 
It can be concluded that for different values of fiber orientation angle, the curves are very close together for all 

three buckling types. For value of fiber orientation angle 45 ,60 ,90° ° ° (Figure 7–b and Figure 8–a, 8–b) the 
non–dimensional critical force value is constantly increasing. The critical force has a minimum only for fiber 

orientation angle 30°  and aspect ratio a/b=0,7 (Figure 7–a). A very small value of the non–dimensional critical 
force leads to the deformation of the composite plates and the occurrence of instability of the system. 
CONCLUSION 
In this paper, there are analytical expressions for non–dimensional buckling load for three characteristic cases 
of buckling of simply supported composite plates. Based on CLPT, in this paper was analyzed influence of fiber 
orientation angle and aspect ratio a/b on the non–dimensional buckling load on biaxial compressed composite 
plates embedded in elastic medium.  
It has been shown that with the change of fiber orientation angle, the value of the non–dimensioning critical 
load is changed for all three characteristic buckling cases. Laminate have different minimum and maximum 
values of non–dimensional critical force at the same value of aspect ratio. For laminate with fiber orientation 

angle 230 10 10 230M M M M° ° ° ° non–dimensional critical buckling has minimum. 
Note: This paper was presented at IIZS 2021 – The XI International Conference on Industrial Engineering and Environmental Protection, organized by Technical 
Faculty “Mihajlo Pupin” Zrenjanin, University of Novi Sad, in Zrenjanin, SERBIA, in 07–08 October, 2021. 
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