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Abstract: This paper applied the method outlined in Refined Beam theory 2 (RBT2) for the analysis of a deep prismatic beam. RBT2 made assumptions of the 
displacement functions that are used in the beam analysis, this present study however, modified the works of RBT2 by providing a simple approach of obtaining the 
displacement function to be used for any boundary condition. To achieve this, the governing general differential equation, which is derived from the total potential 
energy of the beam, is integrated. Again, the total potential energy functional of the beam is minimized with respect to the displacements coefficients. This gives the 
formulas for calculating the displacement coefficients and natural frequency. The results of an illustrative example showed excellent agreement with results of other 
theories. Of the theories that considered the effects of shear deformation, a maximum percentage difference of -5.799% was obtained in the results of the centre 
deflection while a maximum of 3.0477% was obtained in the results of the resonating frequency. However, there was a higher percentage difference in the results 
obtained when compared with the thin beam theory. The results, however, showed that the percentage difference reduced as the span-depth ratio increased. This 
small value of percentage difference show that this present method is a reliable method for the analysis of deep prismatic beams of any given boundary condition 
and aspect ratio. 
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1. INTRODUCTION 
One of the most common structural elements is the beam. Several studies have been carried out on the analysis 
of beam-type structures and a number of theories have been developed. The oldest and most popular beam 
theories are the Classical Beam Theory (CBT). In the CBT, it is assumed that the vertical line, which is initially 
straight and perpendicular to the mid-plane before bending remain straight and perpendicular to the mid-
plane after bending. As a result of this assumption, both transverse shear and transverse normal strain are 
ignored (Mesut and Turgat, 2007; Gawali et al., 2011; Wang et al., 2000, Ibearugbulem et al., 2015). This 
assumption is useful for thin beams (when the span-depth ratio is more than 20). But for deep beams (with 
span-depth ratio less than 20), the assumption no longer yields accurate results (Ibarugbulem et al., 2015). 
Another popular beam theory is the Timoshenko beam also known as the First Order Shear Deformation Theory 
– FSDT (Viskas and Ajah, 2016; Sayyad, 2011).  This theory sought to address the limitation of the CBT, which 
ignored shear deformation effects. FSDT assumes that straight lines perpendicular to the mid-plane before 
bending remain straight, but no longer perpendicular to the mid-plane after bending. (Wang et al., 2000). 
According to Viskas and Ajay (2016), this assumption implied a constant shear stress distribution across the 
beam thickness. This necessitated the need for introducing a shear correction factor. 
To avoid the use of the correction factor, several higher order shear deformation theories, referred to as refined 
beam theories have been developed. These theories introduce a displacement that is a function of polynomials.  

Ibearugbulem et al. (2015) noted that an erroneous assumption (uc =  −z dw
dx

) was used in all the refined beam 
theories. The error came from the assumption that the total displacement is composed of the classical axial 
displacement and the shear displacements. That is (u =  uc +  us). And from the CBT, the axial displacement 

is used, giving that uc =  −z dw
dx

. They opined that such assumption implied zero vertical shear strain for the 

classical part of the strain. That is, "γxz =  du
dz

+  dw
dx

= 0". Following that observation, Ibearugbulem et al. (2015) 
developed two new theories that fully implemented the assumption that engineering vertical strain is not fully 
zero. However, the work of Ibearugbulem et al. (2015) depended on assumption of the displacement functions 
used in the developed theories. This present study modifies the refined beam theory 2 (RBT2) as proposed by 
Ibearugbulem et al. (2015) by presenting a simple approach to obtain displacement equations for any given 
support condition that could be used in RBT2. The present approach is simple and straightforward.  
2. MODEL DEVELOPMENT 
The basic assumptions of RBT2 of thick line continuum of small deflection used in the model development 
include the following: 
≡ The line continuum material is elastic, homogenous and isotropic. 
≡ The line continuum  is straight (not bent) before loading. 
≡ The out of plane displacement (w) of the middle surface of the line continuum  is less than one-third of plate 

thickness.  
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≡ The middle x-y plane of the line continuum shall not stretch.  
≡ The x-y plane and y-z plane shear strains are very small when compared with x-z shear strain. Hence, they 

are assumed to be zero. 
≡ The normal strains εy, εz acting normally on the x-z plane and x-y plane respectively are so small when 

compared with normal strain εx acting normally on the y-z plane and x-z shear strain. Hence, they are 
assumed to be zero. Another consequence of this is that the Poisson's ratios for x-y plane and y-z plane are 
zero. 

≡ The maximum x-z plane shear stress (τxzm) distributed through the line continuum thickness is the product 
of nominal x-z plane shear stress (τxz) and shear stress shape factor, G(z). That is: 

τxzm = τxzG(z) and τxz = E
2(1+μ) γxz.  That is:   τxzm = EG(z)

2(1+μ) γxz 

≡ Like the third order shear deformation theory, the slope of RBT2 is split into classical part and shear 
deformation part.  

The axial displacement is considered to be made up of the classical part and the shear deformation part. This 
addition is: 

u = uc + us                                                                                   (1) 
The vertical shear strain is obtained by adding the classical and shear deformation part as follows: 

θ = θc + θs = γxzc + γxzs                                                                      (2) 
The classical vertical shear strain is: 

γxzc  =  
duc
dz

+
dw
dx

                                                                              (3) 

The shear deformation vertical shear strain is: 
γxzs  =  θs                                                                                  (4) 

According to Ibearugbulem et al. (2015), the two terms at the left hand side of equation (3) are complementary. 
That is they are equal to each other. Hence, 

duc
dz

=
dw
dx

                                                                                 (5) 

Integrating equation (5) gives:  

uc = z
dw
dx

                                                                                 (6) 

Slope is primarily defined as the first derivative of deflection with respect to axial coordinate.  
Thus, classical and shear deformation axial displacements are given respectively as: 

uc = zθc                                                                                 (7) 
us = zθs                                                                                 (8) 

Substituting equations (6) and (8) into equations (1) yields: 

u = z
dw
dx

+ zθs                                                                            (9) 

From the assumptions,  εy, εz, γxy and γyz are zero. Therefore, the strain components are as follows: 

εx  =
du
dx

=
d

dx
�z

dw
dx

+ zθs� = z
d2w
dx2

+ z
dθs
dx

=  εx  = z�
d2w
dx2

+
dθs
dx

�                        (10) 

γxz  = γxzc  + γxzs = �
duc
dz

+
dw
dx
� + θs  =  �

dw
dx

+
dw
dx
� + θs =  2

dw
dx

+ θs                    (11) 

 Constitutive Relations 
The relationships between stresses and strains of the thick line continuum are: 

σx = E . εx                                                                                     (12) 

τxz =
E

2(1 + μ)   . γxz                                                                           (13) 

 Total Potential Energy Functional for a Vibrating Deep Beam 
Strain energy is defined mathematically as: 

U =  
1
2
� � � �σxεx + τxzγxz�

t
2

−t
2

b

0

L

0
(dxdydz)                                                       (14) 

For a beam subjected to dynamic loading, the external work is in two parts; one due to bending and the other 
due to vibration. The external work is defined as: 
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V =
−mλ2

2
� w2
l

0
dx − q� w

l

0
dx                                                          (15) 

The algebraic summation of the strain energy and the external work is the total potential energy functional 
given as: 

Π =  
1
2
� � � �σxεx + τxzγxz�

t
2

−t
2

b

0

L

0
(dxdydz) 

−mλ2

2
� w2
l

0
dx − q� w

l

0
dx                       (16) 

Substituting equation (10), (11), (12), and (13), into (16) gives: 

Π =  
EI
2
� ��

d2w
dx2

�
2

+ 2 �
d2w
dx2

�
dθs
dx

+ �
dθs
dx

�
2

+
6α2 �4 �dw

dx
�
2

+ 4 �dw
dx
� θs + [θs]2�

L2 × {1 + μ} �
L

0
dx 

−mλ2

2
� w2
l

0
dx − q� w

l

0
dx                                                                    (17) 

where: α is the span-depth ratio (L/t)   
 General Variation of Total Potential Energy Equation 
General variation is the minimization of the total potential energy functional with respect to displacement 
functions. The total potential energy functional contains two displacement functions (deflection and slope). 
Differentiating equation (17) with respect to w and θs will yield two simultaneous equations.  

dπ
dw

=  
dπ
dθs

 0                                                                               (18) 

That is: 

dπ
dw

=  
EI
2
� �2

d4w
dx4

+ 2
d3θs
dx3

+
6α2 �8 d2w

dx2
+ 4 dθs

dx
�

L2 × {1 + μ} �
L

0
dx − mλ2 � w

l

0
dx − q� 1

l

0
dx = 0        (19) 

and  

dΠ
dθs

=  
EI
2
� �2

d3w
dx3

+ 2
d2θs
dx2

+
6α2 �4 dw

dx
+ 2θs�

L2 × {1 + μ} �
L

0
dx = 0                               (20) 

For pure bending, frequency is zero. With this equation (19) becomes: 

EI� �
d4w
dx4

+
d3θs
dx3

+
6α2 �8 d2w

dx2
+ 4 dθs

dx
�

L2 × {1 + μ} �
L

0
dx − q� 1

l

0
dx = 0                             (21 ) 

For free vibration, uniform distributed load is zero. With this equation (19) becomes: 

E I
2
� �2

d4w
dx4

+ 2
d3θs
dx3

+
6α2 �8 d2w

dx2
+ 4 dθs

dx
�

L2 × {1 + μ} �
L

0
dx − mλ2 � w

l

0
dx = 0                       (22) 

Equations (21) and (22) can be written in terms of the non-dimensional coordinate, R. This gives: 
E I
L4
� �

d4w
dR4 + L

d3θs
dR3 +

6α2

{1 + μ} �4
d2w
dR2 + 2L

dθs
dR

��
1

0
dR − q� 1

1

0
dR = 0                     (23) 

E I
L4
� �

d4w
dR4 + L

d3θs
dR3 +

6α2

{1 + μ} �4
d2w
dR2 + 2L

dθs
dR

��
1

0
dR − mλ2 � w

1

0
dR = 0                  (24) 

where: 

R =  
x
L

                                                                                           (25) 

Solving equation (20) gives: 
d3w
dx3

+
d2θs
dx2

+ e �2
dw
dx

+ θs� = 0                                                               (26) 

where: 

e =
6α2

L2 × {1 + μ}                                                                                 (27) 

Rearranging equation (26) gives: 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XX [2022] | Fascicule 2 [May] 

16 |  F a s c i c u l e  2  

�
d2

dx2
+ 2e�

dw
dx

+ �
d2

dx2
+ e� θs = 0                                                               (28) 

The non trivial conditions for equation (28) to be zero are: 

e = −0.5
d2

dx2
 and e = −

d2

dx2
                                                                 (29) 

It is made out of equation (29) that: 

e =
6α2

L2 × {1 + μ} = c1
d2

dx2
                                                                     (30) 

Where c1 is a yet to be determined constant. Similarly, a condition for equation (26) to be zero is: 

θs = c2
dw
dx

                                                                                 (31) 

Where c2 is another yet to be determined constant. Substituting equations (30) and (31) into equation (21) gives: 

EI� �
d4w
dx4

+
d3 �c2

dw
dx
�

dx3
+ 8c1

d4w
dx4

+ 4c1
d3 �c2

dw
dx
�

dx3
�

L

0
dx − q� 1

l

0
dx = 0   

That is: 

EI�
d4w
dx4

(1 + c2 + 8c18c1 + 4c1c2)
L

0
dx − q� 1

l

0
dx = 0                                      (32) 

Rearranging equation (32) and writing the outcome in non-dimensional coordinate gives: 
d4w
dR4 =

ql4

EIc3
                                                                                    (33) 

where: c3 = (1 + c2 + 8c18c1 + 4c1c2). Similarly, Substituting equations (30) and (31) into equation (22) gives: 
d4w
dR4 −

mλ2wl4

EIc3
= 0                                                                          (34) 

 Determination of Displacement Functions 
Solving equations (33) and (34) respectively by open integration yields:  

w = �
an
n!

Rn
n=4

n=0

= A h                                                                         (35) 

w = �
an
n!

Rn
n=∞

n=0

= a H                                                                        (36) 

For tractable solution and fulfilling the fourth order governing equation of equation (34), the  
infinite series of equation (36) is truncated and gives: 

w = �
an
n!

Rn
n=4

n=0

= A h                                                                         (37) 

Substituting equation (37) into equation (31) gives: 

θs =
B
L

dh
dR

                                                                                   (38) 

 Formulas for Analyses 
The minimization of the total potential energy functional gives the direct governing equation from which the 
formulas are obtained. Substituting equations (37) into equation (17) and writing the outcome in a more 
symbolized form gives:  

Π =  
EI

2L3
�[A2 + 2AB + B2]k1 +

6α2

{1 + μ}
[4A2 + 4AB + B2]k2� −

Lmλ2

2
A2kλ − AqLkq         (39)  

where: 

k1 = � �
d2h
dR2�

2

dR
1

0
, k2 = � �

dh
dR
�
21

0
dR, kλ = � h2

1

0
dR, kq = � h

1

0
dR 

Minimization equation (39) in turn with respect to A and B and yields two simultaneous equations as follow: 
dΠ
dA

=   �[A + B]k1 +
6α2

{1 + μ}
[4A + 2B]k2� −

AL4mλ2

EI
kλ −

qL4

EI
kq  = 0               (40) 
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dΠ
dB

=  
E I
2L3

�[2A + 2B]k1 +
6α2

{1 + μ}
[4A + 2B]k2� − 0 = 0.                                   (41) 

Solving equations (40) and (41) for pure bending yields: 

A = �
1

k1
+

1
k2
�

1 + μ
6α2

�� × kqβ �
qL4

EI
�                                                          (42) 

B = − �
2

k1
+

1
k2

{1 + μ}
6α2

� × kqβ �
qL4

EI
�                                                        (43) 

Also, solving equations (40) and (41) for free vibration yields: 

ω2 =
6α2k1k2

[k1{1 + μ} + 6α2k2]kλ
�

EI
m L4

�                                                         (44) 

 Numerical Example 
This example is carried out to demonstrate the applicability of the present theory. The centre deflection wc and 
the fundamental natural frequency ω of a simply supported thick isotropic beam of rectangular cross section 
with Poisson’s ratio of 0.25 were determined using the present approach and the results were compared with 
those of other theories.  
After satisfying the boundary conditions, the displacement equations for a simply supported thick isotropic 
beam are: 

w = A(R − 2R3 +  R4)                                                                    (45) 

θs =
B
L

(1 − 6R2 + 4R3)                                                                  (46) 

The centre displacement and the natural fundamental frequency are obtained based on the above solution as: 

wc = β �
qL4

EI
� �

5
384

+
91

3264α2
�                                                             (47) 

ω2 =
284 44

155
α2

�156
25

+ 102
35
α2�

�
EI

m L4
�                                                               (48) 

3.  RESULTS AND DISCUSSION 
The centre displacement and the natural fundamental frequency are presented in the following non-
dimensional form: 

wc���� =  w�
Ebh3

qL4
� ;  ω� =  ω�

L2

t
��

ρ
E

                                                      (49) 

The results of the centre displacement and the natural fundamental frequency obtained from the present 
method vis-avis other theories are presented in tables 1 and 2 respectively.  
The results obtained from the present theories are compared with the elementary theory of beam (ETB), first 
order shear deformation theory (FSDT) of Timoshenko, higher order shear deformation theories of Heyliger and 
Reddy, Ghugal  and exact elasticity solutions given by Timoshenko and Goodier and Cowper. The results of the 
aforementioned theories are obtained from the work of Sayyad A. S (2011). This is shown in Table 1 and Table 
2. The result of the present study gives results that are in close agreement with previous theories except that of 
the Bernouli-Euler theory. The results of the present study under-predicts the centre deflection when compared 
with the exact solution, with the highest percentage difference noticed for the beam with a span-to-depth ratio 
of 2. However, as the span-to-depth ratio increases, the results get closer to the exact solution. The Elementary 
Beam Theory (ETB) is observed to underestimate the centre displacement across all span-to-depth ratios. The 
wide difference of the results of the ETB and the results of other studies is because the ETB does not consider 
shear deformation effects.  
This excellent agreement of the results of the present study shows that it is an easy and dependable method 
that is adequate for the analysis of the free and forced vibration analysis of deep prismatic beams. 
4. CONCLUSION  
The results of the centre displacement and the natural fundamental frequency of vibration of a deep prismatic 
beam using modified refined beam theory have been presented. This present study however, modified the 
works of RBT2 by providing a simple method of obtaining the displacement function which applies to any 
boundary condition. 
The results of an illustrative example showed excellent agreement with results of other theories. However, there 
was a higher percentage difference in the results obtained when compared with the thin beam theory. The 
results, however, showed that the percentage difference reduced as the span-depth ratio increased. This small 
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value of percentage difference show that this present method is a reliable method for the analysis of deep 
prismatic beams of any given boundary condition and aspect ratio. 

Table 1: Centre displacement wc (at L/2, z = 0)  
for a simply supported beam 

α Theory w�
Ebh3

qL4
� 

% 
Difference 

2 

Present Study 2.399 0.000 
Model 1 (Ambartsumian) 2.357 1.747 

Model 2 (Kruszewski) 2.515 -4.840 
Model 3 (Reddy) 2.523 -5.173 

Model 4 (Touratier) 2.529 -5.423 
Model 5 (Soldatos) 2.513 -4.756 

Model 6 (Karama et. al) 2.51 -4.631 
Model 7 (Akavei) 2.523 -5.799 

Timoshenko(FSDT) 2.538 -5.799 
Bernouli-Euler(ETB) 1.563 34.845 

Timoshenko and Goodier (Exact) 2.453 -2.255 

4 

Present Study 1.772 0.0000 
Model 1 (Ambartsumian) 1.762 0.5418 

Model 2 (Kruszewski) 1.805 -1.8853 
Model 3 (Reddy) 1.806 -1.9418 

Model 4 (Touratier) 1.805 -1.8853 
Model 5 (Soldatos) 1.802 -1.7160 

Model 6 (Karama et. al) 1.801 -1.6596 
Model 7 (Akavei) 1.804 -1.8289 

Timoshenko(FSDT) 1.806 -1.9418 
Bernouli-Euler(ETB) 1.563 11.7746 

Timoshenko and Goodier (Exact) 1.785 -0.7564 

10 

Present Study 1.596 0.0000 
Model 1 (Ambartsumian) 1.595 0.0599 

Model 2 (Kruszewski) 1.602 -0.3787 
Model 3 (Reddy) 1.602 -0.3787 

Model 4 (Touratier) 1.601 -0.3161 
Model 5 (Soldatos) 1.601 -0.3161 

Model 6 (Karama et. al) 1.601 -0.3161 
Model 7 (Akavei) 1.601 -0.3161 

Timoshenko(FSDT) 1.602 -0.3787 
Bernouli-Euler(ETB) 1.563 2.0650 

Timoshenko and Goodier(Exact) 1.598 -0.1281 
 

Table 2: Resonating frequency w,  
for a simply supported beam 

α Theory ω�
L2

t
��

ρ
E

 
%  

difference 

4 

Present Study 2.677 0.000 
Model 1 (Ambartsumian) 2.625 1.96467 

Model 2 (Kruszewski) 2.597 3.01038 
Model 3 (Reddy) 2.596 3.047727 

Model 4 (Touratier) 2.596 3.047727 
Model 5 (Soldatos) 2.596 3.047727 

Model 6 (Karama et. al) 2.608 2.599565 
Model 7 (Akavei) 2.598 2.973033 

Bernouli-Euler(ETB) 2.779 -3.78674 
Timoshenko (FSDT) 2.624 2.002016 

Ghugal 2.602 2.823646 
Heyliger and Reddy 2.596 3.047727 

Cowper 2.602 2.823646 

10 

Present Study 2.821 0.000 
Model 1 (Ambartsumian) 2.808 0.464476 

Model 2 (Kruszewski) 2.802 0.677159 
Model 3 (Reddy) 2.802 0.677159 

Model 4 (Touratier) 2.802 0.677159 
Model 5 (Soldatos) 2.802 0.677159 

Model 6 (Karama et. al) 2.805 0.570817 
Model 7 (Akavei) 2.803 0.641711 

Bernouli-Euler(ETB) 2.838 -0.59894 
Timoshenko (FSDT) 2.808 0.464476 

Ghugal 2.804 0.606264 
Heyliger and Reddy 2.802 0.677159 

Cowper 2.804 0.606264 
 

The close agreement of the results of the present formulation with those obtained from other theories showed 
that the present formulation can be used as a useful tool for the analysis of the free and forced vibration analysis 
of deep prismatic beams. 
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