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Abstract: The present article examines the dynamics of a pipelining on a damped Winkler elastic foundation. The dependence of the critical velocity of the 
fluid in the pipe on the critical velocity of the external fluid for different parameters of the damped Winkler elastic foundation is investigated. The dynamic 
stability of a pipeline resting on a damped Winkler elastic foundation and immersed in fluid that is moving with a particular velocity is investigated. The 
Galerkin method is employed to approach numerically the problem. Conclusions are drawn on the influence of the damped Winkler elastic foundation on the 
critical flow velocity of the pipeline. 
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1. INTRODUCTION  
Pipes with flowing fluid and immersed in fluid are used in many areas of the industry. The flow of the fluid in 
the tube as well as the flow of the external fluid causes oscillations in it. A number of scientists are conducting 
research in the field of fluid–structure interaction. 
Gregory and Païdoussis [4] were the first to present a solution to the equations describing the dynamics of the 
pipe. They define the velocity of the fluid at which the pipeline loses stability as the critical velocity of the fluid. 
Deng and Yang [2] studied the dynamics of pipes with different types of flowing fluid. The tubes are immersed 
in fluid. The pipe is considered as a cylindrical shell. Numerical surveys have been performed. The fluid–filled 
tubes examined in [3] are buried in an elastic solid or immersed in fluid. A semi–analytic finite element method 
is applied. The results are compared with those obtained by the scaled boundary finite element method. Great 
coincidence of the results is observed. 
In [5] is presented an investigation about the dynamic stability of a pipe with a flowing fluid immersed in a 
non–viscous fluid moving at a constant speed. It is also given an analytical solution for the same type of pipe 
with a rigid body attached at one of its ends. 
Lin and Qiao [6] examined an axially moving pipe immersed in a fluid. The Differential quadrature method is 
applied. Pipes with three types of supports at both ends were studied: fixed–fixed, pinned–pinned, pinned + 
torsion spring – pinned + torsion spring. Parametric studies have been performed. 
In study [7] is considered a moving tube immersed in fluid. An analytical solution for non–viscous and viscous 
fluid is presented. Brennan [1] presents research on the inertial forces with which a fluid acts on a body 
immersed in it. Examples of analytical research and experiments are presented. 
Wu and Shin [8] performed a dynamic study of a continuous tube conducting fluid. Transfer matrix method is 
used. Lolov [9] investigates fluid conveying pipe immersed in moving fluid and lying on Winkler elastic 
foundation. Numerical studies have been performed to determine the critical velocities of the two fluids. 
The present article examines the dynamics of a pipelining on a damped Winkler elastic foundation. The 
dependence of the critical velocity of the fluid in the pipe on the critical velocity of the external fluid for 
different parameters of the damped Winkler elastic foundation is investigated. 
2. VIBRATION OF A FLUID–IMMERSED STRAIGHT PIPE CONVEYING FLUID  
The transverse vibration of a fluid–immersed straight pipe conveying inviscid fluid and lying on a damped 
Winkler elastic foundation is governed by the following differential equation [5]: 
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where t  is the time, ( )txw ,  is the lateral displacement of the pipe axis, x  is the coordinate along the axis, EI  

is the rigidity of the pipe. The mass of the pipe per unit length is denoted by pm  and the mass of the fluid per 

unit length of the pipe by fm . em  is the added mass of the external fluid. V  is the flow velocity of the fluid in 

the pipe and eV  is the velocity of the external fluid. wk  and wd  are respectively the rigidity and the damping 
coefficient of the foundation. 
The added mass of the external fluid per unit length of the pipe em  in the case when the pipe is close to a 
horizontal plane (Figure 1) is calculated by the following formula, given in [1]: 
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where eρ  is the density of the external fluid. 
The spectral Galerkin method is applied to approximate the solution of differential 
equation (1). The solution is sought in the following form: 
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where: ( )tz i  – are unknown functions; ( )xy i  – are basic functions that satisfy the 
boundary conditions of the pipe. Such functions are the functions describing the i–
th mode of vibration of a beam with the same static scheme as the immersed pipe.  

On the basis of the differential equation, describing the lateral vibrations of an immersed tubular beam, filled 
with stationary fluid ( 0V = ) is obtained [8]: 
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where iω  is the circular frequency of the beam. 
Substituting equation (3) into equation (1), one obtains the residual function: 
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In (6) and in the sequel, primes denote derivatives with respect to x  and dots with respect to the time t . 
The Galerkin method requires the residual function ( )t,xR  to be orthogonal to the basic functions in the 

interval [ ]l;0x∈ : 
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Equation (7) is rewritten in the following form: 
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Equation (8) represents a system of n  differential equations with n  unknown functions ( )tzi . In order to solve 
the system, the described in [8] method is applied. According to it the pipe is divided to sections with length 

x∆ . The following relationships are taken into account:  

{ } { } xyydxyy k
T

i

l

0

ki ∆=∫                  (9) 

{ } { } xyydxyy k
T

i

l

0

ki ∆′=′∫                (10) 

{ } { } xyM
EI
1

dxyy k
T

i

l

0

ki ∆=′′∫                    (11) 

where in (9),(10) and (11): 
{ }iy  – is a column vector consisting of the lateral displacements of the stations on the axis of the pipe, 
corresponding to the i –th eigen form in the case of stationary fluid ( 0V = ); 
{ }iy ′ – is a column vector consisting of the rotations of the cross–sections in the stations on the axis of the pipe, 
corresponding to the i –th eigen form in the case of stationary fluid ( 0V = ); 
{ }iM  – is a column vector consisting of the bending moments in the stations on the axis of the pipe, 
corresponding to the i –th eigen form in the case of stationary fluid ( 0V = ). 

 
Figure 1. A scheme for obtaining 

the added mass of the external fluid  
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Substituting (9),(10) and (11) in (8) the following system of n  differential equations with n  unknown functions 
( )tzi  is obtained: 
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The system (12) could be rewritten in matrix form: 
0zKzCzM =++        (13) 

The general solution of the system (12) is expressed through the roots ( n21,...,λλ ) of the equation: 

0Xdet =         (14) 
The elements of the matrix X  are given by: 
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On the basis of obtained roots ( n21,...,λλ ) could be drawn conclusions about the stability of the system. The 
system is stable if the real part of all the roots of the characteristic equation (14) is negative.  
The roots ( n21,...,λλ ) depend on all the 
parameters of the system. If all of them are fixed 
except the velocity of the conveyed fluid V  or 
the velocity of the external fluid eV , one could 
obtain the corresponding critical velocities. 
3. RESULTS AND DISCUSSION  
Numerical studies have been carried out for the 
fluid conveying pipe in Figure 2.  
The geometric and the material characteristics of the pipes are: rigidity 2kNm26.771EI = ; 

m/kg80.10mp = ; m/kg02.18me = . The density of the external fluid is m/t1e =ρ  and the density of 

the internal fluid is m/t2.1f =ρ . 

In the Figures below is shown the dependence of the critical velocity of the fluid in the pipe crV  on the critical 

velocity of the external fluid cr,eV  for different parameters of the of the damped Winkler elastic foundation. The 

sign ‘minus’ on the graphics corresponds to a velocity of the extremal fluid eV  that is in opposite direction of 
the velocity of the internal fluid V . 

 
Figure 3. Dependence of the critical velocity of the fluid in the pipe crV  on the critical velocity of the external fluid cr,eV  for 2

w m/kN10k =  

 
Figure 2. Static scheme of the investigated pipe conveying fluid 
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Figure 4. Dependence of the critical velocity of the fluid in the pipe crV  on the critical velocity of the external fluid cr,eV  for 2

w m/kN30k =  

 
Figure 5. Dependence of the critical velocity of the fluid in the pipe crV  on the critical velocity of the external fluid cr,eV  for 2

w m/kN50k =  

4. CONCLUSION 
The results in Figure3, Figure4 and Figure5 show that for the investigated system the damping of the Winkler 
elastic foundation has a destabilizing effect. The bigger the damping parameter wd  the smaller is the stability 
area depicted in the Figures.  
Note: This paper was presented at IIZS 2021 – The XI International Conference on Industrial Engineering and Environmental Protection, organized by Technical 
Faculty “Mihajlo Pupin” Zrenjanin, University of Novi Sad, in Zrenjanin, SERBIA, in 07–08 October, 2021. 
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