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Abstract: In this paper, the buckling analysis of pinned–pinned beams with an intermediate roller support and pinned–pinned beams with an intermediate 
spring support is carried out using the finite element method. The results for the critical loads for one–, two– and three–dimensional models with 
homogeneous, as well as heterogeneous cross–sections are investigated and compared. In order to illustrate the validity and accuracy of the presented 
method, the critical force findings are compared with those found in the literature. A good agreement is concluded in each case. 
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1. INTRODUCTION 
The finite element method (FEM) is a powerful tool that offers a vast number of applications – see, e.g., [3,4,6]. 
Many studies have been developed by researchers regarding buckling since Euler's pioneering work. Book [7] 
offers a thorough examination of the theory of elastic stability of continuously axially loaded columns. Moreover, 
the static and dynamic stability of columns under self–weight is addressed in [9] by means of analytical and 
numerical studies. Anisotropic laminated columns are in the spotlight in [1]. The authors present analytical and 
FEM parametric studies too. In [8], the buckling instability of a system of three simply supported elastic 
Timoshenko beams linked by Winkler elastic layers with each beam subjected to the same compressive axial 
force was examined. Using the Ritz method, in paper [2] Aydogdu investigated the buckling of cross–ply 
laminated beams under various boundary circumstances. The authors of [5] presented the issue of how the 
critical load of heterogeneous beams with three supports can be determined provided that the intermediate 
support is a spring. They used Green’s function of the three–point boundary value problem to solve the 
eigenvalue problem that provides the critical loads using the boundary element method (BEM). 
In the present paper, a finite element method based approach is applied to study the buckling behavior of 
pinned–pinned beams with an intermediate roller support (PrsP) and with an intermediate spring support 
(PssP) subject to axial load. The material is linearly elastic, isotropic and the material distribution can change 
over the cross–section – it is called cross–sectional inhomogeneity. As it turns out, the buckling loads are 
affected significantly by the location of the middle support. The results of the critical loads are compared to 
those found using the boundary element technique and there is a high correlation observed. 
2. ADDRESSING THE STABLITY PROBLEMS 
The considered beams are shown in Figure 1. The 
axial external force N is a compressive load applied 
on the right end side of each beam. The beams have 
uniform cross–section throughout their length. The 
E–weighted centerline of the beams coincide with 
the axis x�. It is assumed that the coordinate plane x�z� 
is a symmetry plane of the beams. When it is about 
heterogeneous cross–section, the modulus of 
elasticity E satisfies the symmetry condition E (y�, z�)= 
E (−y�, z�). The beam’s initial length is L, and the 
location of the middle support is identified by b� , 
which value is between 0 and 1. When zero, the left 
and intermediate supports coincide, when 1, the right and 
intermediate support positions are the same. 
Consider now the bi–material beam with cross–section 
shown in Figure 2. It is assumed that a=c=10 mm, a1 = a2= a/3, 
L=100 mm, E1=ESteel=2e5 N/mm2 , E2=EAluminum =0.7e5 N/mm2 

and, in accordance with the finite element software 
documentation, to find the buckling load, a total of N= 1 N 
unit force is applied on the right end of each beam. In the 1D 
model, it is a concentrated point load, in 2D and 3D, it is 
uniformly distributed over the end–section. 

 

 
Figure 1. (a) PrsP beam; (b) PssP beam 

 
Figure 2. Cross-section of the selected heterogeneous beams 
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When the beams are heterogeneous, the flexural stiffness to axis y� is 

Iey = ac4

12
�2E1+E2

3
� = 104

12
�2.2+0.7

3
� ∗ 105 = 1.3056 ∗ 108 Nmm2 . (1) 

However, when the beams are made of homogenous steel, the flexural stiffness becomes 

Iey = IE1 = 104

12
∗ 2 ∗ 105 = 1.6666 ∗ 108 Nmm2 . (2) 

(For pure aluminium, it is 0.58e6 Nmm2.) In the 1D model, the average Young modulus and Poisson number 
meant the input data for cross–sectional heterogeneity, thus 

E = �2∗E1+E2
3

� = �2.2+0.7
3

� ∗ 105  = 1.5667 ∗ 105 N/mm2, (3) 

ν = �2ν1+ν2
3

� = �2∗0.3+0.33
3

� =0.31. (4) 
Commercial software Ansys was used to calculate the critical loads of the considered beams. The adaptive finite 
element approach was used to identify sections of the mesh where the solution is insufficiently precise. In these 
ranges, the mesh was refined until the solution achieved the required degree of precision. The published results 
can be considered as converged ones. Because of the applied kinematic restraints, buckling can only occur 
about axis y�. The layers are perfectly tied.  
 Stability problems of PrsP beams 
In this Section, the numerical results achieved about pinned–pinned beams with an intermediate roller support 
are presented. Both homogeneous, and heterogeneous findings are given, as per the 1D/2D/3D models – see 
Tables 1–3. The first buckling modes are illustrated in Figures 3–5. 

Table 1. Critical load results of 1D PrsP beams 
1D homogeneous PrsP beam 1D heterogeneous PrsP beam 

b�(−) FEM (105 N) BEM (105 N) [5] b�(−) FEM (105 N) BEM (105 N) [5] 
0 1.604 1.643 0 1.256 1.287 

0.25 4.456 4.878 0.25 3.560 3.821 
0.5 5.978 6.573 0.5 4.775 5.149 

0.75 4.456 4.878 0.75 3.560 3.821 
1 1.604 1.643 1 1.256 1.287 

 

  
Figure 3. First buckling mode shape when b�� = 0.5:(a) 1D PrsP with homogeneous cross–section;(b) 1D PrsP with heterogeneous cross section 

In the present problem, buckling can only occur about the y� axis when there are three vertical layers and 
because of the constraints. Hence the 2D heterogeneous scenario can't be modelled as a plane stress state 
since the material distribution is a function of y�.  

Table 2. Critical load results of 2D PrsP beams 
2D homogeneous PrsP beam 

b�(−) FEM (105 N) BEM (105 N)[5] 
0 1.646 1.643 

0.25 4,833 4.878 
0.5 6,604 6.573 

0.75 4,833 4.878 
1 1.646 1.643 

 

 
 Figure 4. First buckling mode shape of 2D homogeneous PrsP beam (b� = 0.5) 

 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XX [2022]  |  Fascicule 3 [August] 

137 |  F a s c i c u l e  3  

Table 3. Critical load results of 3D PrsP beams 
3D homogeneous PrsP beam 3D heterogeneous PrsP beam 

b�(−) FEM (105 N) BEM (105 N) [5] b�(−) FEM (105 N) BEM (105 N) [5] 
0 1.632 1.643 0 1.281 1.287 

0.25 4.767 4.878 0.25 3.742 3.821 
0.5 6.391 6.573 0.5 5.013 5.149 

0.75 4.767 4.878 0.75 3.742 3.821 
1 1.632 1.643 1 1.281 1.287 

 

  
Figure 5. First buckling mode shape when b� = 0.5:(a) 3D PrsP with homogeneous cross–section; (b) 3D PrsP with heterogeneous cross–section 

 Stability problems of PssP beams 
The numerical results for the second case are gathered hereinafter.  

Table 4. Critical load results of 1D PssP 
1D homogeneous PssP beam 1D heterogeneous PssP beam 

b�(−) FEM (105 N) BEM (105 N) [5] b�(−) FEM (105 N) BEM (105 N) [5] 
0 1.604 1.643 0 1.256 1.287 

0.25 3.526 3.710 0.25 2.958 3.087 
0.5 5.973 6.573 0.5 4.775 5.149 

0.75 3.526 3.710 0.75 2.958 3.087 
1 1.604 1.643 1 1.256 1.287 

 

  

Figure 6. First buckling mode shape when b� = 0.5:(a) 1D PssP with homogeneous cross–section;(b) 1D PssP with heterogeneous cross section 
Table 5. Critical load results of 2D PssP 

2D homogeneous PssP beam 
b�(−) FEM (105 N) BEM (105 N) [5] 

0 1,646 1.643 
0.25 3,650 3.710 
0.5 6,427 6.573 

0.75 3,650 3.710 
1 1,646 1.643 

 

 
Figure 7. First buckling mode shape of 2D PssP with homogeneous cross–section (b� = 0.5) 

To study the stability of PssP beams shown in Figure 1b, it was assumed that the stiffness of the spring is 
k=33333 N/mm. For all the simulations, the spring support has two degrees of freedom (translation along z� axis 
and rotation about y� axis. Similarly, as before, the buckling loads are evaluated according to multiple cross–
sections and models. Again, as 2D PrsP beams, the heterogeneous case can’t be modelled properly. 
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Table 6. Critical load results of 3D PssP 
3D homogeneous PssP beam 3D heterogeneous PssP beam 

b�(−) FEM (105 N) BEM (105 N) [5] b�(−) FEM (105 N) BEM (105 N) [5] 
0 1.632 1.643 0 1.281 1.287 

0.25 3.791 3.710 0.25 3.233 3.087 
0.5 6.728 6.573 0.5 5.327 5.149 

0.75 3.791 3.710 0.75 3.233 3.087 
1 1.632 1.643 1 1.281 1.287 

 

  
Figure 8. First buckling mode shape when b� = 0.5:(a) 3D PssP with homogeneous cross–section;(b) 3D PssP with heterogeneous cross–section. 

Table 7 shows the relationship between the critical loads and the 
spring support stiffness when b=0.25. If the spring stiffness (k) 
tends to zero, the PssP beam acts as if it were a pinned–pinned 
beam and if k tends to infinity, the PssP beam behaves as if it were 
a pinned–pinned one beam with an intermediate rigid roller 
support. These results and remarks were clarified in details by the 
authors in the paper [4] using the boundary element method 
with the help of the Green function technique. 
3. CONCLUSIONS 
A finite element method was used to study the stability problem 
of PrsP and PssP beams. The most important conclusions are 
gathered below. 
 3D and 2D elements give better results of the critical loads than that 

the 1D elements because they give the best insight to the 
deformation state of the structure. 

 For all the simulation cases, the maximum critical load has been found when the roller/spring support is located in the 
middle. 

 The spring stiffness has also an effect on the critical load. When the spring stiffness tends to infinity, the PssP beam 
reacts like PrsP beam. When the spring stiffness is zero, it is the case when only the two end supports are present. 

 Material heterogeneity also has notable effects on the critical loads. Therefore with suitable material selection, it is 
possible to increase the critical loads. 

 The results of the critical loads by means of FEM were compared to those found using the boundary element technique. 
The agreement is judged to be really good. 
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Table 7. Variation of the buckling load of 3D PssP beams 
against k when b� = 0.25  

Spring stiffness 
k (N/mm) 

FEM 
3D homogeneous 

PssP beam 
3D heterogeneous 

PssP beam 
10 1.788 1.469 

100 1.796 1.478 
1000 1.877 1.558 

10000 2.601 2.253 
33333 3.791 3.233 
50000 4.224 3.528 

100000 4.758 3.861 
500000 5.306 4.126 

5000000 5.311 4.183 
 


